

Lidl Great Britain Ltd

DRAINAGE STRATEGY REPORT

Blackpill, Swansea

Lidl Great Britain Ltd

DRAINAGE STRATEGY REPORT

Blackpill, Swansea

REPORT (REV P01) PUBLIC

PROJECT NO. 70050327 OUR REF. NO. 0327-WSP-XX-XX-C-RP-0510

DATE: SEPTEMBER 2021

WSP

1 Capital Quarter Tyndall Street Cardiff CF10 4BZ Phone: +44 2920 769 200

WSP.com

QUALITY CONTROL

Issue/revision	P01	P02	P03	P04
Remarks	First Issue			
Date	Sept 2021			
Prepared by	Ollie Gentilcore			
Signature				
Checked by	Andrew Wilkinson			
Signature				
Authorised by	Andrew Wilkinson			
Signature				
Project number	70050327			
Report number	RP-0510			
File reference	0327-WSP-XX- XX-C-RP-0510			

CONTENTS

1. INTRODUCTION	
BACKGROUND	
LIMITATIONS	
CONSTRUCTION (DESIGN AND MANAGEMENT) REGULATIONS 2015	
2. SITE SETTING	
LOCATION	
DEVELOPMENT PROPOSALS	
EXISTING DRAINAGE NETWORK	
3. SURFACE WATER	
STANDARD S1 - RUNOFF DESTINATION	
STANDARD S2 – HYDRAULIC CONTROL	
Discharge Rate	
SuDS Proposals	
Attenuation Storage	
Development Creep	
STANDARD S3 – WATER QUALITY	
STANDARD S4 – AMENITY	
STANDARD S5 – BIODIVERSITY	
STANDARD S6 – CONSTRUCTION, OPERATION AND MAINTENANCE	
4. FOUL DRAINAGE	
PROPOSED FOUL FLOWS	
5. CONCLUSION	

TABLES

Table 1 - SuDS Drainage Hierarchy	13
Table 2 - Surface Water Brownfield Runoff Rates	14
Table 3 - Surface Water Maintenance Schedule for Green Roof Systems	17
Table 4 - Proposed Peak Foul Flow Rates	19

FIGURES

Figure 1 – Site Location	11
Figure 2 – Typical Green Roof Construction	15

APPENDICES

1. INTRODUCTION

1.1. BACKGROUND

WSP has been appointed by Lidl Great Britain Ltd to undertake a drainage strategy for a proposed retail store in Blackpill, Swansea.

The objectives of the report are to:

- Review the existing drainage arrangements on site for foul and surface water;
- Assess the feasibility of Sustainable Drainage Systems (SuDS) features within the development to control and discharge surface water runoff to comply with the requirements of the "Statutory National Standards for Sustainable Drainage Systems (Wales)" (SNSSUDS);
- Provide a preliminary design for SuDS including indicative sizing of storage/attenuation features and a conceptual plan, suitable for inclusion in a pre-application submission to the local authority's SuDS Approval Body (SAB).
- Identify a potential discharge point foul flows generated by the proposed development.

The following tasks have been undertaken to complete this report:

- Undertake a desktop investigation of the site's existing drainage arrangements;
- Outline anticipated solutions for foul and surface water disposal. This will include preliminary calculations, in order that the conceptual designs may be agreed with the relevant authorities;
- Determine the area of impermeable surfaces that will be generated by the proposed development and estimate the likely historical brownfield run-off rates for this site;
- Assess the feasibility of using infiltration as a disposal method, based on initial soakaway testing results or other available information on ground conditions;
- Estimate the size of surface water storage needed to manage run-off from the site postdevelopment, using drainage design software (Microdrainage);
- Provide general information on the maintenance and adoption of SuDS via the SAB's approval process; and
- Give consideration to drainage exceedance. In particular, use topographic information to identify overland flow paths and areas susceptible to surface water ponding.

1.2. LIMITATIONS

WSP has prepared this report in accordance with the instructions of their client, Lidl Great Britain Ltd, for their sole and specific use. Any person who uses any information contained herein do so at their own risk. © WSP UK Ltd.

The conclusions and recommendations contained herein are limited by the availability of background information and the planned use for the site.

Third-party information has been used in the preparation of this report, which WSP UK Ltd, by necessity assumes is correct at the time of writing. Whilst all reasonable checks have been made on data sources and the accuracy of the data, WSP UK Ltd accepts no liability.

1.3. CONSTRUCTION (DESIGN AND MANAGEMENT) REGULATIONS 2015

The revised Construction (Design and Management) Regulations 2015 (CDM Regulations) came into force in April 2015 to update certain duties on all parties involved in a construction project, including those promoting the development. One of the designer's responsibilities under clause 9 (1) is to ensure that the client organisation, in this instance Lidl Great Britain Ltd, is made aware of their duties under the CDM Regulations.

2. SITE SETTING

2.1. LOCATION

The site is located in Blackpill, Swansea SA3 5AT (Grid Ref: 62060 90963). The site previously consisted of a Petrol Filling Station (PFS) and 2no. houses, comprising of a small portion of green space. The PFS has now been demolished and remediated but the 2no. houses that form part of the site remain. The site is bounded by Mumbles Road to the east, existing houses to the north and south, and an open field to the west, which is bordered to the northwest by the Cwm Stream.

The site area is approximately 0.413ha and is shown in Figure 1 below.

Figure 1 – Site Location

2.2. DEVELOPMENT PROPOSALS

The proposed development consists of a new Lidl retail food store (Use Class A1), together with associated parking of up to 50 spaces, landscaping, related infrastructure, and engineering works.

2.3. EXISTING DRAINAGE NETWORK

The existing site consisted of a PFS and 2no. residential properties (semi-detached) with associated front and rear yards/gardens.

The Dwr Cymru Welsh Water (DCWW) public sewer record plan shows that an existing 225mm diameter foul sewer runs northeast out of the site from the location of the on-site residential units. This sewer serves multiple residential units on Mumbles Road before increasing to a 300mm diameter foul sewer and subsequently connecting to the public, brickwork combined sewer (90x60inch) located east of Mumbles Road. A copy of the DCWW public sewer record plan is appended to this report in Appendix E.

It is likely that foul flows from the 2no. residential properties that lie within the site boundary, and those from the demolished PFS, drain into the aforementioned DCWW foul sewer.

The residential properties have pitched roofs that drain via rainwater downpipes, making it possible to drain into the foul sewer at the rear of the properties. Based on topographical survey evidence, it is assumed that a significant amount of runoff was conveyed towards the open fields and a nearby stream behind the plots.

A 300mm diameter DCWW surface water sewer has also been identified running in a southwest direction alongside Mumbles Road before it crosses the southern corner of the site, before continuing towards and finally discharging into the Cwm Stream. It is assumed that surface water runoff from the PFS site discharged into this surface water sewer, as well as from the on-site residential properties which have pitched roofs and rainwater downpipes. It is also likely to receive surface water flows from some of the adjacent residential properties and the adjacent highway.

3. SURFACE WATER

The following surface water drainage strategy has been designed to fully conform with the six standards set out under the document 'Statutory standards for sustainable drainage systems – designing, constructing, operating and maintaining surface water drainage systems' (Welsh Government, 2018). These standards are:

- S1 Runoff destination
- S2 Hydraulic control
- S3 Water quality
- S4 Amenity
- S5 Biodiversity
- S6 Construction, operation and maintenance

This section is to be read in conjunction with drawing 0327-WSP-XX-XX-C-DR-0500 located under Appendix A of this report.

3.1. STANDARD S1 - RUNOFF DESTINATION

In order to determine the most appropriate runoff destination from the proposed development, the hierarchy as set out under standard S1 is to be followed:

Table 1	- SuDS	Drainage	Hierarchy
---------	--------	----------	-----------

	Priority Level	Discharge Location	Availability	Comments
	1	Collect for use	×	System would be implemented for roof terrace irrigation only. As this would be seasonal only there would be no stormwater management benefit and would increase the risk from legionella disease.
	2	Infiltrated to ground	×	The ground on site generally comprises of sandy gravel which facilitates rapid infiltration. gravel soil identified in the GI report. However, due to the presence of Made Ground and hydrocarbons, infiltration has been disregarded.
Hierarchy	3	Discharge to a surface water body	×	As noted under paragraph 2.3, there is an option to discharge surface water flows to the nearby stream, although this is restricted by third-party land and not considered further.
	4	Discharge to a surface water sewer, highway drain, or another drainage system	✓	As noted under paragraph 2.3, there is an option to connect surface water flows to the surface water sewer located on Mumbles Road. Therefore, this option has governed the overall drainage strategy.
	5	Discharge to a combined Sewer	~	Despite the possibility to connect surface water flows to the public combined brickwork sewer, this can be discounted due to more favourable alternatives.

WSP September 2021 Page 13 of 22

Collect for use

The water demand within the proposed retail unit does not warrant the cost of a rainwater harvesting system and therefore the scheme does not include collection for reuse (on the basis of viability).

Infiltration

The Phase 2 Ground Investigation report undertaken by Remada Ltd (730.03.01 Remada Phase 2), confirmed that 3no. test pits 1.5 metres below ground level were excavated to undertake a soakaway test to BRE Digest 365. The results indicated that there was rapid infiltration into the shallow soils, however, the site has historically been used as a PFS, and hydrocarbons were recorded within the underlying soils circa 2m depth. Furthermore, the natural strata underlying the made ground (and quite possibly at shallower depths on either side of the made ground) typically comprises Alluvium (soft clays with layers of peat) to depths between 6.0 and 6.3mbgl. As a result, infiltration methods and soakaways have been discounted.

Discharge to a surface water body

There is however an option to discharge into the nearby watercourse, i.e. the Cwm Stream. The stream lies some 70m southwest of the site and the site already benefits from a surface water sewer that discharges into it.

As shown on the DCWW public sewer record plan (Appendix E), the aforementioned existing sewer, into which it is thought that the site discharged into historically (i.e. from the PFS), is a public surface water sewer that also appears to serve some of the housing on Mumbles Road (to the east of the site). The existing surface water sewer discharges into the Cwm stream approximately 70m southwest of the site boundary. This can be seen as the most sustainable/viable option for surface water discharge, subject to DCWW approval.

3.2. STANDARD S2 – HYDRAULIC CONTROL

Discharge Rate

The total area of the site is 0.413 hectares and was mostly hard paved when the PFS was in situ (predemolition/remediation).

The proposed is considered as 100% impermeable for the purposes of this assessment. Rainfall runoff rates have been calculated for several return periods using FEH rainfall data, the results are shown in Table 2 below.

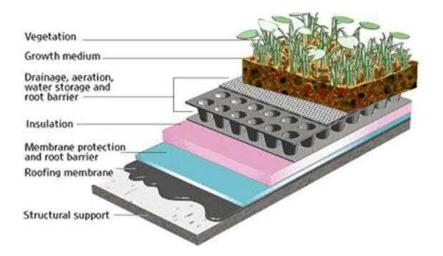
Return Period (Years)	Runoff Rate (I/s)
2	22.9
30	49.8
100	61.7

Table 2 - Surface Water Runoff Rates from Proposed Development

As per G2.24 of the 'Statutory standards for sustainable drainage systems – designing, constructing, operating and maintaining surface water drainage systems' (Welsh Government, 2018), previously

developed sites are to provide a betterment of at least 30%. For the purposes of this design, however, and in light of the lack of evidence around previous surface water discharge, we propose to restrict to a greenfield discharge rate of 5.1 litres per second, providing a betterment of 78% against the 2-year return period provided in Table 2.

Surface water runoff is to be restricted using a flow control device located within the car park before discharging into the existing DCWW surface water sewer.


SuDS Proposals

The proposed development comprises of 1672m² retail floor space, a 1700m² car park area in addition to other essential infrastructure such as footways for pedestrian access, therefore only 9% of the total site area is available for ground level SuDS features such as swales, ponds, and bioretention.

The proposed development has a flat roof area that can adopt a 'green roof' system to enhance biodiversity. The green roof will provide limited amenity due to the lack of access, however, rainfall landing on these areas will be treated by filtration through the planting media and underlying bedding material, enhancing water quality significantly.

The proposed green roof will cover a maximum area of 1543m².

Figure 2 – Typical Green Roof Construction

Due to the negligible attenuation provided through the green roof system, flows will be conveyed down to the proposed permeable paving and voided subbase located within the car park. Preliminary calculations [Ref: 0327-WSP-MRS-CA-004] indicate dimensions of 58m x 24.6m x 0.50m for a Type 3 subbase with 30% voids.

Bioretention features have been proposed to provide additional benefits to water quality, amenity, and biodiversity.

Attenuation Storage

All attenuation storage has been sized to accommodate the critical 100-year storm event plus an allowance of 40% for climate change, in accordance with Table 3 of document *'Adapting to Climate*

Change: Guidance for Flood and Coastal Erosion Risk Management Authorities in Wales' (Welsh Government, 2017).

Development Creep

Development creep has not been included within the surface water drainage strategy as there is no space for extension.

3.3. STANDARD S3 – WATER QUALITY

Pollution index ratings for commercial/industrial roofing using inert materials is classed as very low.

Source control treatment is provided by the green roof systems located on the Lidl food store. Rainfall landing on these areas will be treated by filtration through the planting media and underlying bedding material.

Bioretention features have been provided to maximise water treatment at ground level before discharge to the proposed sub-base.

3.4. STANDARD S4 – AMENITY

Due to the proposed use of the site, amenity benefits enjoyable by the general public may not be immediately obvious, however, the bioretention features and the green roof will provide many aesthetic benefits, with a variety of colours and foliage that will evolve throughout the seasons. These features can also assist in defining clear boundaries throughout the development, contributing to a safer and calmer environment for pedestrians alongside trafficked areas. Introducing bioretention and other landscaped areas into the development, accounting for up to 275m² (6.7% of the total area), will only serve to improve on the existing scenario.

3.5. STANDARD S5 – BIODIVERSITY

Raingardens/bioretention areas are valuable in terms of water absorption and its filtering abilities, which in turn facilitate quality habitat conditions for wildlife in urban areas. These systems can be designed to support local biodiversity requirements. Planting is to be confirmed at detailed design by landscaping designers and agreed with the key stakeholders at a later stage.

A green roof will provide multiple environmental benefits, creating habitats for living organisms, thus significantly improving on the historical situation that was mostly hard paved.

3.6. STANDARD S6 – CONSTRUCTION, OPERATION AND MAINTENANCE

The Construction Phase Plan and Construction Environmental Management Plan documents are to be produced by the Contractor. These documents will be produced in the later design stages of the project and will be submitted as part of the Full SAB Application.

The proposed development is to be maintained by a facilities management company employed by the developer.

The proposed SuDS assets will require regular inspection and maintenance as part of the maintenance schedule for the development. Recommended maintenance schedules for the Green Roof system is noted within Table 3. Further operational and maintenance advice is provided in Appendix D but should also be confirmed with the manufacturer prior to construction.

Maintenance Schedule	Action	Frequency
Regular inspections	Inspect all components including soil substrate, vegetation, membranes, and roof structure for proper operation, the integrity of waterproofing and structural stability.	Annually and after severe storms
	Inspect soil substrate for evidence of erosion channels and identify any sediment sources	Annually and after severe storms/rainfall events
	Inspect drain inlets and outlets to ensure that there are no blockages and are free draining.	Every 3 months and after severe storms/rainfall events
	Inspect underside of roof for evidence of leakage	Annually and after severe storms/rainfall events
Regular maintenance	Remove debris and litter to prevent clogging of inlet drains and interference with plant growth	Six monthly and annually or as required
	Remove any debris and build up from outlets. Debris must be removed from site and not flushed down drainage system.	Every 3 months.
	During establishment (i.e. year one), replace dead plants as required	Monthly (but usually responsibility of manufacturer)
	Post establishment, replace dead plants as required (where > 5% of coverage)	Annually (in autumn)
	Remove fallen leaves and debris from deciduous plant foliage, if applicable.	Six monthly or as required
	Remove nuisance and invasive vegetation, including weeds	Six monthly or as required
	Mow grasses, prune shrubs, and manage other planting (if appropriate) as required – clippings should be removed and not allowed to accumulate	Six monthly or as required
	If erosion channels are evident, these should be stabilised with extra soil substrate similar to the original material,	As required

Table 3 - Surface Water Maintenance Schedule for Green Roof Systems

Remedial actions	and sources of erosion damage should be identified and controlled	
	If drain inlet has settled, cracked or moved, investigate and repair as appropriate	As required

4. FOUL DRAINAGE

4.1. PROPOSED FOUL FLOWS

Peak design discharges have been calculated based on the current development criteria as described in Section 2.2 of this report and for the following:

 Commercial: 0.6 litres/ second/ hectare (DWF, multiply by 6 for peak, i.e. 3.6 litres/ second/ hectare)

A summary of the proposed peak foul flow calculation is shown in Table 4 below.

Table 4 - Proposed Peak Foul Flow Rates

Type of Development	Floor Area	Peak Flow	Peak Foul Flow (l/s)
Commercial	0.167 ha	3.6 l/ s/ ha	0.60
Total	-	-	0.60

5. CONCLUSION

The proposed drainage strategy has been set out in this report to satisfy Standards S1 to S6 as set out under the 'Statutory standards for sustainable drainage systems – designing, constructing, operating and maintaining surface water drainage systems' (Welsh Government, 2018).

Surface water flows from the site are to be restricted to a maximum allowable rate of 5.1 litres per second, which reflects greenfield conditions and when compared with the historical brownfield runoff provides a 78% betterment against the 1 in 2yr return period event. The surface water connection and discharge rate are to be agreed upon with the LLFA and DCWW.

Surface water flows are proposed to discharge to the public surface water 300mm vitrified clay surface water sewer located within site.

As the proposed development is restricted in terms of size, it is not possible to include multiple green surface SuDS assets such as swales, ponds, or detention basins. Multiple benefits can still however be recognised through the proposed bioretention features and green roof shown within the strategy.

Flows from the green roof are to drain into the permeable paving and voided subbase lined with an impermeable membrane. A flow control device is to be fitted to outlet of the voided subbase, restricting flows to the maximum allowable discharge rate of 5.1 litres per second.

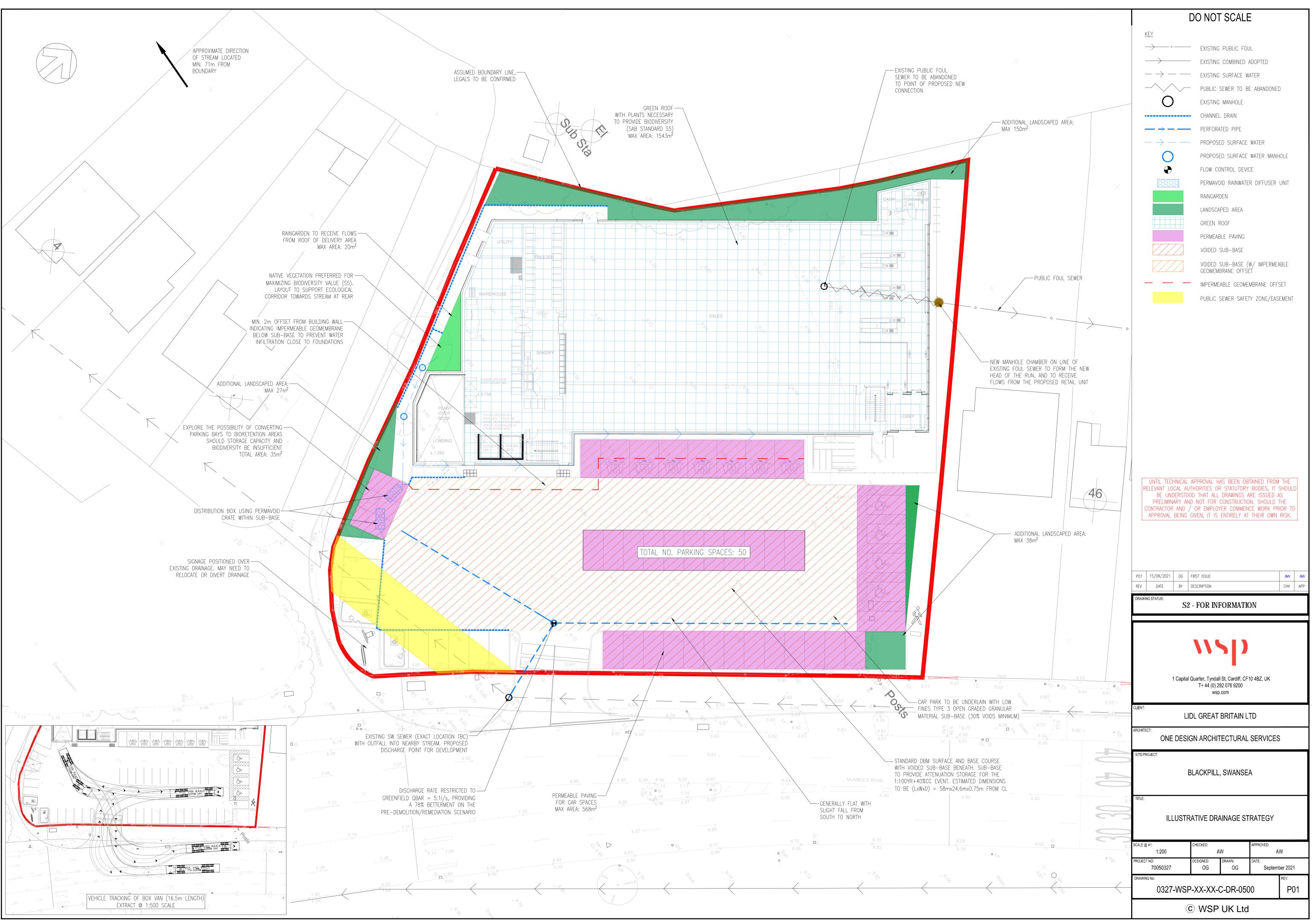
Pollution index ratings for commercial roofing using suitable materials is classed as very low and source control treatment is provided by the green roof system through filtration at source.

Amenity is provided through the raingardens that define clear boundaries throughout the development, contributing to a safer and calmer environment for pedestrians in/around trafficked areas. Introducing raingardens/bioretention into the development, accounting for up to 275m² (6.7% of the total area), will only improve on the existing scenario.

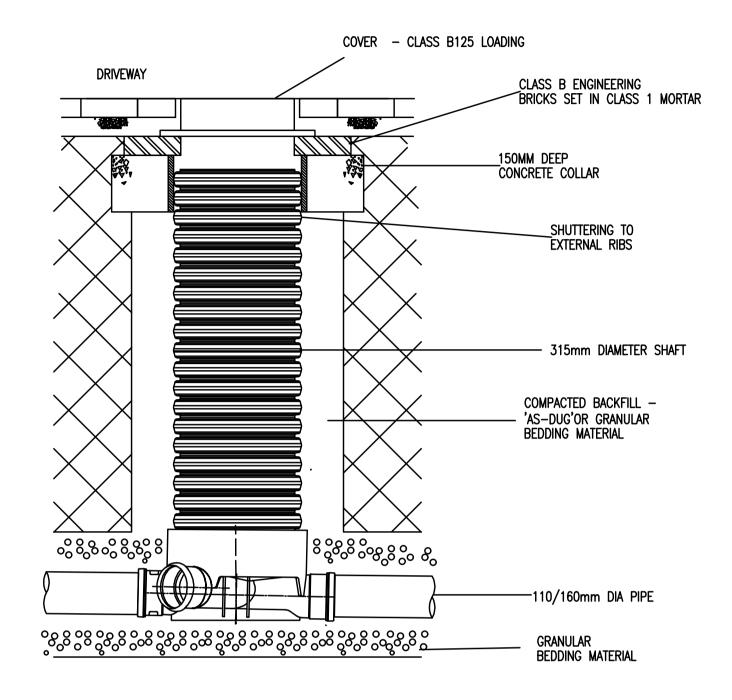
The green roof is to occupy 96% of the total roof area of the Lidl store. Whilst access to the roof is restricted, amenity benefits cannot be fully recognised, however, there may be an opportunity here to alter the planting specification in collaboration with the County Ecologist to provide enhanced biodiversity. This would provide a more biodiverse situation to that of the historical site that was mostly hard paved. The proposed development is to be maintained by a facilities management company employed by the developer. Funding for the maintenance of the building and external areas will be made by commercial occupants, as standard practice for this type of development. The proposed SuDS assets will require regular inspection and maintenance as part of the maintenance schedule for the development.

In summary, the scheme addresses the requirements of the Statutory Standards as follows:

Standard	Designer's Response
S1 – Runoff destination	 Rainwater harvesting is not viable due to low water demand and associated increased risk of legionella disease. The GI report (ref. 730.03.01 Remada Phase 2) states that infiltration is not feasible for the proposed development due to the presence of made ground (which contains hydrocarbons) with Alluvium (soft clays with layers of peat) beneath.

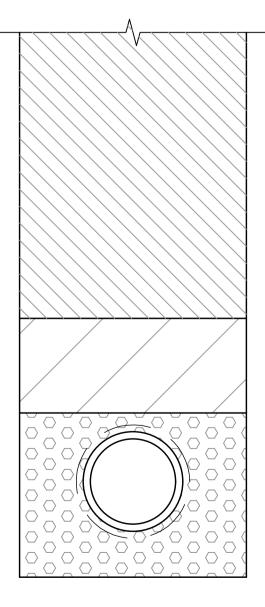

	 The nearest possible water body for discharge is the stream located to the west behind the site, which then discharges into the River Clyne and then the sea. The nearest public surface water sewer is located east of the site and passes through the southern part of the boundary before discharging into the Cwm Stream. In this case, the nearest and most viable destination for surface water runoff is to discharge into the surface water sewer at the front of the site.
S2 – Hydraulic control	 Surface water flows are to be restricted to a discharge rate of 5.1l/s (which is equivalent to the greenfield rate). This provides a betterment of 78% against the 2-year return period historical brownfield runoff from the PFS and houses. Attenuated surface water flows are to be stored within the voided subbase below the proposed car park. All storage has been sized to accommodate the critical storm from a 100-year return period event plus an additional allowance of 40% for climate change.
S3 – Water quality	 Pollution index ratings for commercial roofing using inert materials is classed as very low. Source control treatment is provided by the green roof system through filtration at source.
S4 – Amenity	 Amenity is provided through the multiple raingardens distributed across the site.
S5 – Biodiversity	 A green roof area is proposed and there may be an opportunity here to alter the planting specification in collaboration with the County Ecologist to provide enhanced biodiversity. This would provide a net gain in biodiversity to that of the historical/pre-remediated site that was mostly hard paved.
S6 – Construction, operation, and maintenance	 The Construction Phase Plan and Construction Environmental Management Plan documents are to be produced by the Contractor. These documents will be produced in the later design stages of the project and will be submitted as part of the Full SAB Application. The proposed development is to be maintained by a facilities management company employed by the developer/occupier. The proposed SuDS assets will require regular inspection and maintenance as part of the maintenance schedule for the development. Recommended maintenance schedules for the proposed SuDS assets are noted under Table 3 and Appendix D of the report. Further operational and maintenance advice is to be obtained from the manufacturer prior to construction.

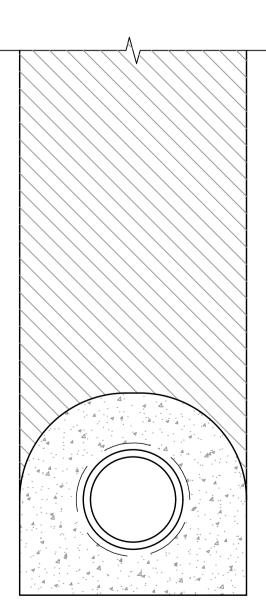
Foul flows from the proposed unit will discharge into the dedicated public foul sewer at the eastern edge of the site.


Appendix A

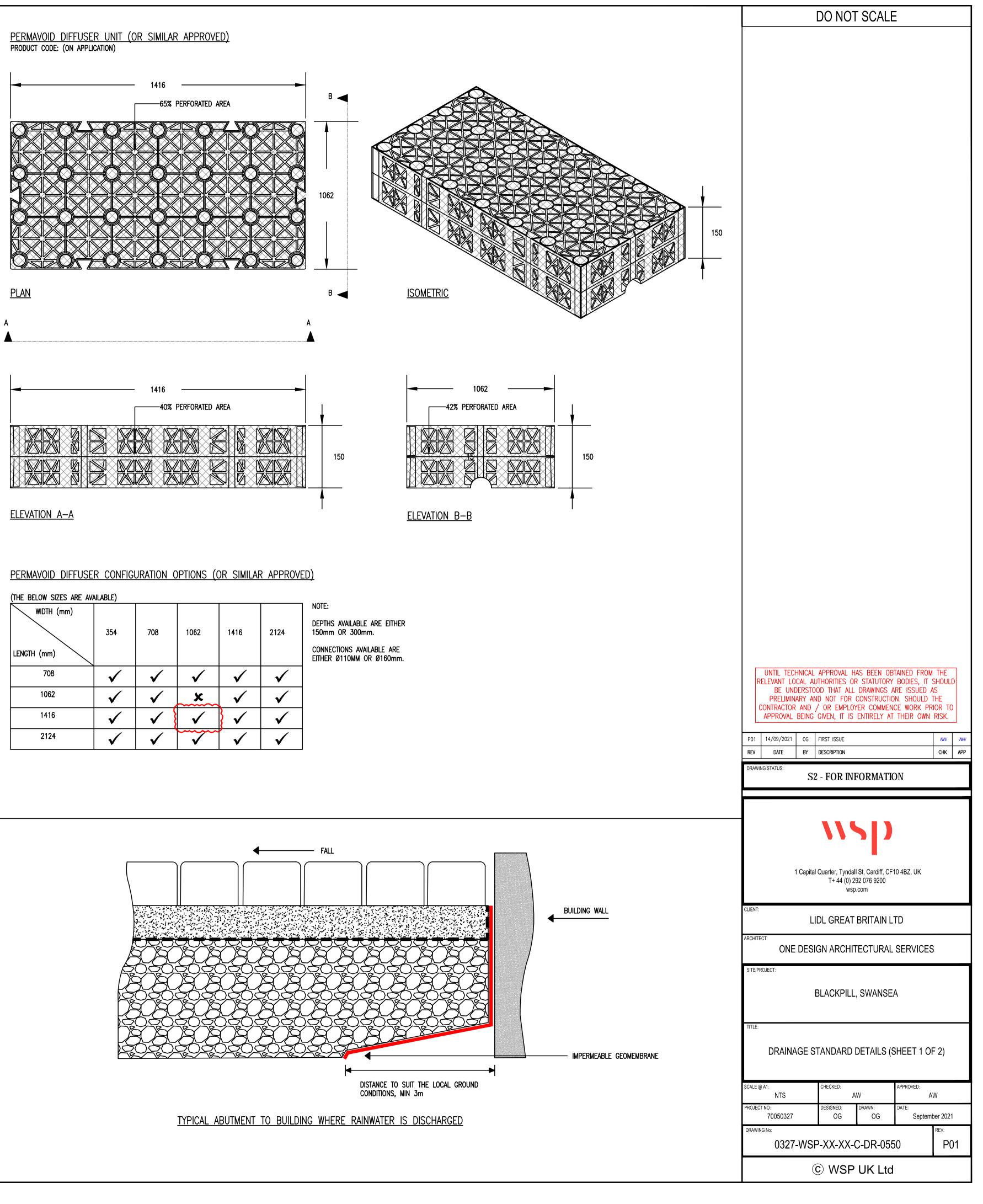
)

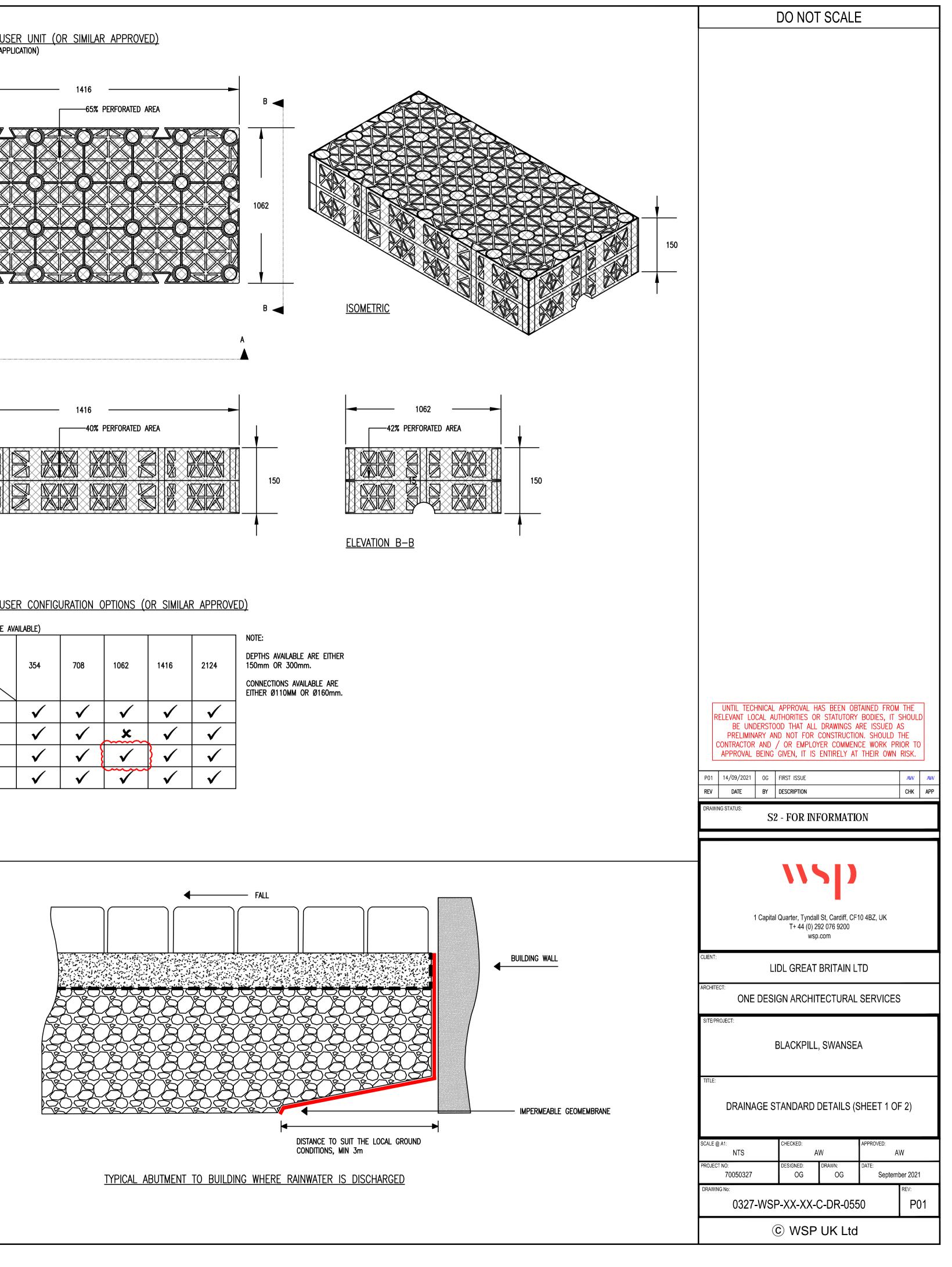
SCHEME DRAWINGS

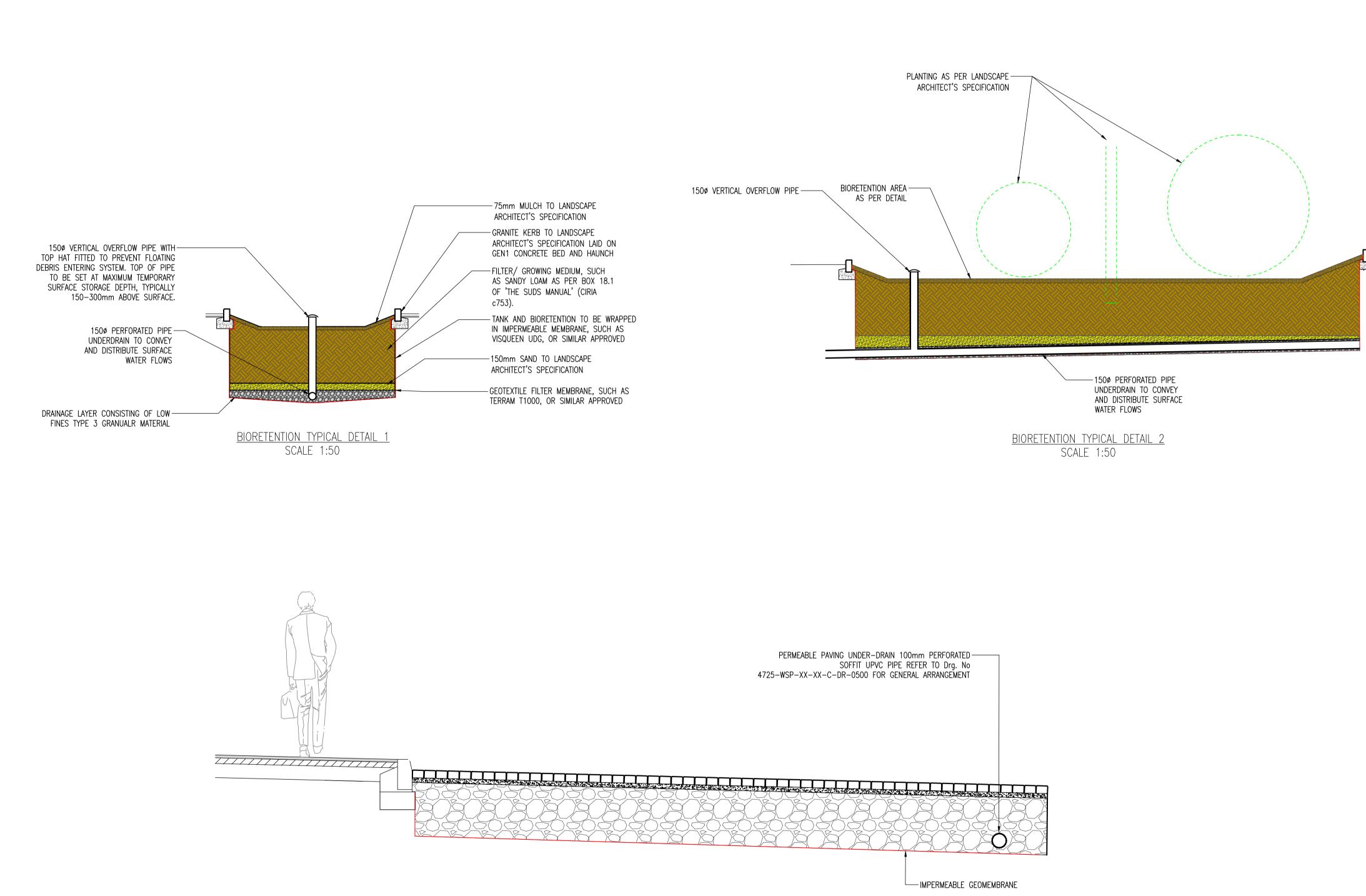


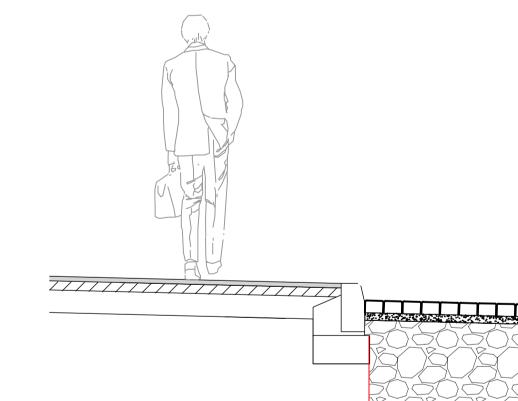


<u>WAVIN – RANGE 315 (OR SIMILAR APPROVED)</u> B125 LOADING (PAVED AREAS WITH LIMITED TRAFFIC LOAD)


TO BE READ IN CONJUNCTION WITH PIPE BEDDING NOTES AND HATCHINGS DETAIL




<u>TYPE S PIPE BEDDING</u> <u>(FULL GRANULAR BED & SURROUND)</u>



<u>TYPE Z PIPE BEDDING</u> (FULL CONCRETE BED & SURROUND)

PERMEABLE PAVING TYPICAL DETAIL

UNTIL TECHNICAL APPROVAL HAS BEEN OBTAINED FROM THE RELEVANT LOCAL AUTHORITIES OR STATUTORY BODIES, IT SHOULD BE UNDERSTOOD THAT ALL DRAWINGS ARE ISSUED AS PRELIMINARY AND NOT FOR CONSTRUCTION. SHOULD THE CONTRACTOR AND / OR EMPLOYER COMMENCE WORK PRIOR TO APPROVAL BEING GIVEN, IT IS ENTIRELY AT THEIR OWN RISK.									
P01 14/09/2021 OG FIRST ISSUE AW AW									
REV	DATE	BY	DESCRIPTION			СНК	APP		
	DRAWING STATUS: S2 - FOR INFORMATION 1 Capital Quarter, Tyndall St, Cardiff, CF10 4BZ, UK T+ 44 (0) 292 076 9200 wsp.com								
	CLIENT: LIDL GREAT BRITAIN LTD ARCHITECT: ONE DESIGN ARCHITECTURAL SERVICES								
SITE/PR	SITE/PROJECT:								
DRAINAGE STANDARD DETAILS (SHEET 2 OF 2)									
SCALE @	A1: 1:50		CHECKED:	N	APPROVED: A	W			
PROJECT	PROJECT NO: DESIGNED: DRAWN: DATE: 70050327 OG OG September 21								
DRAWIN	DRAWING No: REV: 0327-WSP-XX-XX-C-DR-0551 P01								
			c) WSP	UK Ltd					

Appendix B

RUNOFF CALCULATIONS

wsp

Appendix B.1

BROWNFIELD RUN-OFF

Ollie Gentilcore

Mumbles Rd

Swansea

Calculated by:

Site name:

Site location:

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Site Details

Latitude:	51.60037° N
Longitude:	3.99361° W
Reference:	1554481394
Date:	May 10 2021 10:25

This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be	Referenc Date:
the basis for setting consents for the drainage of surface water runoff from sites.	

1

Runoff estimation approach

FEH Statistical

Site characteristics

Total site area (ha):

Notes

(1) Is Q_{BAR} < 2.0 I/s/ha?

Methodology

Q _{MED} estimation method:	Calculate from BFI and SAAR	2.0 l/s/
BFI and SPR method:	Specify BFI manually	
HOST class:	N/A	
BFI / BFIHOST:	0.366	(2) Are
Q _{MED} (I/s):		
Q _{BAR} / Q _{MED} factor:	1.08	Where

Hydrological characteristics

nyarological characterictice	Default	Edited
SAAR (mm):	1128	1128
Hydrological region:	9	9
Growth curve factor 1 year:	0.88	0.88
Growth curve factor 30 years:	1.78	1.78
Growth curve factor 100 years:	2.18	2.18
Growth curve factor 200 years:	2.46	2.46

When Q_{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.

2) Are flow rates < 5.0 l/s?

Where flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage elements.

(3) Is SPR/SPRHOST ≤ 0.3 ?

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.

Greenfield runoff rates

	Default	Edited
Q _{BAR} (I/s):		12.45
1 in 1 year (l/s):		10.96
1 in 30 years (l/s):		22.17
1 in 100 year (l/s):		27.15
1 in 200 years (l/s):		30.63

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Lidl Blackpill, Mumbles Road - Greenfield Runoff Rates 0327-WSP-MRS-CA-001 Date Completed: 05/07/2021 Name: Ollie Gentilcore

Site Area Total	

Greenfield Runoff Rates

	Unfactored Q (I/s/ha)	Factored Q (I/s)
Q1	10.96	4.5
Qbar	12.45	5.1
Q30	22.17	9.2
Q100	27.15	11.2
Q200	30.63	12.7

4134.4 m2 0.413 ha

Appendix B.2

GREENFIELD RUNOFF

wsp

PROJECT: Lidl Blackpill, Mumbles Rd (0327-WSP-MRS-CA-002 Brownfield Rates) From FEH Rainfall Data:

EQ. Variable UK runoff model 24.7 $PR = IF \times PIMP + (100 - IF \times PIMP) \times \frac{NAPI}{PF}$ where: PR = percentage runoff IF = effective paved area factor (Table 24.3) PIMP = percentage impermeability (0-100) PF = soil moisture depth (mm) NAPI = 30-day antecedent precipitation index (API) (depends upon the soil type)

Surface Condition	IF	0.75	[
Impervious Area		0.413	ha
Total Area		0.413	ha
PIMP		100	%

PF

SAAR

NAPI

PR

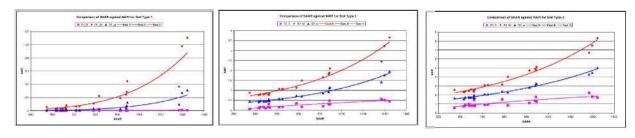
SOIL TYPE

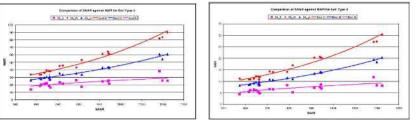
(See graphs below)

200 mm

5 mm

1128


75.63


ABLE 24.3	Recommended values of IF						
	Surface condition	Effective impervious area factor, IF					
	Poor	0.45					
	Fair	0.60					
	Good	0.75					

Note: Percentage Impermeability (0-100) obtained by dividing the total directly connected impervious area (both roofs and roads) by the total contributing area. Note: Only PIMP values greater than 50% are generally accepted

Note: Recommended value of 200mm. Caution is advised if any changes are made.

Note: Use .xml FEH data for SAAR/Linked to prev. page Note: See UKSUDS to obtain SOIL type Note: Use Red curve (winter) from graphs below to obtain NAPI Source: paper.PDF (ciwem.org)

PROJECT: Lidl Blackpill, Mumbles Rd		(0327-WSP-N	MRS-CA-002 Bro	ownfield Rates)						
From FEH Rainfall Data:										
		2	10	20	30	50	100	100+cc		
	Duration*	year rainfall	year rainfall	year rainfall	year rainfall	year rainfall	year rainfall	year rainfall		-
	minutes	mm	mm	mm	mm	mm	mm	mm		
*base on max time of concentration	30	10.2	17.41	20.38	22.16	24.33	27.43	38.402		
	· · · · ·	20.4	34.82	40.76	44.32	48.66	54.86	76.804	rainfall in mm/hr	
Calculate Discharge Rate, Q (I/s)									_	
Wallingford - Variable Q (I/s)		22.94	39.15	45.83	49.83	54.71	61.68	86.36		
									_	
Proposed Rate (I/s)		5.1	5.10	5.10	5.10	5.10	5.10	5.10		
Betterment		78%	87%	89%	90%	91%	92%	94%		
Calaudatian O Danamatan Usad	Climate Ch	ange =	40.00%	6						
Calculation & Parameters Used				0		1/-				
	0 0 0 1			Q		l/s				
	Q = 3.6CvIA	4		1	0.11	mm/hr	-	-	ring the time of concentration	
				A	0.413	s ha	contributing	area -unattenu	ated + greenfield	
	0 00 /4 0	•				T	.,,			
	Cv = PR/10	0		Cv (VARIABLE) 0.76		Volumetric co	o-efficient		

(0327-WSP-MRS-CA-002 Brownfield Rates)

PROJECT: Lidl Blackpill, Mumbles Rd

when whole catchment is being considered

Cv = PR/PIMP

when impermeable area alone being considered

Appendix C

SURFACE WATER SYSTEM CALCULATIONS Mumbles Road, Swansea - 0327-WSP-MRS-CA-003 Catchment & SuDS Area Assessment Date Completed: 17/05/2021 Name: Ollie Gentilcore

Site Area Total 4119 m2

Bioretention Area Checks

Catchment	Catchment Area (m2)	*SuDS Design Area (m2)	SuDS Actual Area (m2)	1
A	554	22.2	27.3	
В	144	5.8	20.8	
С	420	16.8	23.5	
D	543		137 (PP)	
E	436	17.4	189.1	(sufficent capacity for roof (Catchment H) run-off)
F	294		130.2 (PP)	
G	185	7.4	15.2	
Н	1543		1561 (GR)	

*Design area assumes 4% for bioretention/landscaped catchments

Notes Greenfield - UKSuDS Data Brownfield - FEH Rainfall data based on 30min storm

PP = Permeable Paving GR = Green Roof Mumbles Road, Swansea - 0327-WSP-MRS-CA-004 Green Roof Design Calculation Ollie Gentilcore Date: 25/08/2021

<u>Global Variable</u> Storage Structu Outflow Contro Climate Change	ire I	Pipe Pipe 40%			
Rainfall & Netv	vork Details				
Return Period			100 yrs		
Cv Summer			0.75		
Cv Winter			0.84		
Time Area Diag	iram & Green R	Poof			
Green Roof Are			5432 ha		
Depression Sto		0.1	5 mm		
Evapotranpirati	U U		0 mm		(worst case)
Area (per times			0 11111	/ uu y	(worst case)
Timestep	Area (ha)				
0-4	0.028039				
4-8	0.022957				
8-12	0.018795				
12-16	0.015388				
16-20	0.012599				
20-24	0.012377				
24-28	0.008445				
28-32	0.006914				
32-36	0.005661				
36-40	0.004635				
40-44	0.004035				
44-48	0.003107				
48-52	0.002544				
52-56	0.002083				
56-60	0.002003				
60-64	0.001396				
64-68	0.001143				
68-72	0.000936				
72-76	0.000766				
76-80	0.000627				
80-84	0.000514				
00.04	0.000314				
Pipe Structure					
Cover Level	10	2 m			
Invert Level	10	0 m			
Diameter	0.22	5 m			
Slope (1:X)	50	0			
Length	3	0 m			
Pipe Outflow C	ontrol				
Diameter	0.22	5 m			
Slope (1:X)	50				
Length	3	0 m			
Roughness, k	0.	6 mm			
Entry Loss	0.	5			
Contraction	0.	6			
Upstream IL	10	0 m			

Mumbles Road, Swansea - 0327-WSP-MRS-CA-004 Subbase Design Calculation Designed By: Ollie Gentilcore Date: 25/08/2021

Global Variables

Storage Structure	Porous Car Park
Outflow Control	Pipe
Climate Change	40%

Rainfall & Network Details

Return Period	100 yrs
Cv Summer	0.75
Cv Winter	0.84

Time Area Diagram & Permeable Pavement + Green Roof

-	i Diagraffi a r c			
Paved Are		0.185		
Depressio	0	5		
Evapotran	-	0	mm/day	(worst case)
Area (per	timestep)			
Timestep	GR Area (ha)	PP Area (ha)	PP Area +	GR (ha)
0-4	0.028039	0.093	0.121	
4-8	0.022957	0.093	0.116	
8-12	0.018795	0	0.019	
12-16	0.015388	0	0.015	
16-20	0.012599	0	0.013	
20-24	0.010315	0	0.010	
24-28	0.008445	0	0.008	
28-32	0.006914	0	0.007	
32-36	0.005661	0	0.006	
36-40	0.004635	0	0.005	
40-44	0.003795	0	0.004	
44-48	0.003107	0	0.003	
48-52	0.002544	0	0.003	
52-56	0.002083	0	0.002	
56-60	0.001705	0	0.002	
60-64	0.001396	0	0.001	
64-68	0.001143	0	0.001	
68-72	0.000936	0	0.001	
72-76	0.000766	0	0.001	
76-80	0.000627	0	0.001	
80-84	0.000514	0	0.001	
		Total	0.339	

Porous Car Park Structure

Cover Level	10 m
Invert Level	9.25 m
m. Percolation	1000 mm/hr
Infiltration	0 m/hr
Safety Factor	10
Porosity	0.3
Spaces	45
Length	58 m
Av Width	24.6 m
Area	1427 m2
Slope (1:X)	100
Depression	5 mm
Evaporation	0 mm/day
Paving/Laying Depth	130 mm
Base HBCGA	125 mm
Subbase Type 3	495 mm

Pipe Outflow Diameter

Diameter	0.1	m
Design Flow	5.1	l/s
Upstream IL	9.3	m

240min Winter

9.918 m

0 m3

5.1 I/s

150.9 m3

<u>Results</u> Critical Storm Max Water Level Flooded Volume Sum Max Outflow Max Volume

<u>Reference</u> Pavements)

Traffic Category:

Traffic category	Concrete paving units – minimum thickness	Laying course – nominal thickness	Base - HBCGA or AC	Sub-base - CGA or Type 3	Design basis	
-11		Road Vehicle		an permitted by the d Use) Regulations included in this		
10		Cite opecific pa	Knapton (2008			
9		Site opecific pa	Knapton (2008)			
8	80 mm	50 mm	300mm HBCGA or 220mm AC32	150 mm		
7	80 mm	60 mm	200mm HBCGA or 130mm AC32	150 mm	ICPI Permeable	
6	80 mm	50 mm	125 mm HBCGA or 90 mm AC32	150 mm	Design Pro	
5	80 mm	50 mm	100 mm HBCGA or 70 mm AC32	150 mm		

(Interpave Design & Construction of Concrete Block Permeable

SP Group Ltd											Page 1
											Micco
ate 25/08/2021 09:07			Dogio	mod k	y UKOJ	7011					Micro
				3011					Drain		
le Voided Subbase Design	24.0	8.2		-							Brai
9 Solutions			Sourc	e Cor	ntrol 20	019.1	-				
Summary	of Re	sults	for 10)0 yea	ar Retu	rn Pe	erio	d (+4	10%)		
		Half I	Drain Ti	me : 2	49 minute	es.					
Storm	Max	Max	Max		Max	Max		Max	Sta	tue	
Event					ontrol Σ				bta	cub	
	(m)	(m)	(1/s		(1/s)	(1/s)		(m ³)			
			•	-			-				
15 min Summer				0.0	5.1		5.1	47.6		ΟK	
30 min Summer				0.0	5.1		5.1	72.1		OK	
60 min Summer				0.0	5.1				Flood		
120 min Summer				0.0	5.1				Flood		
180 min Summer				0.0	5.1				Flood		
240 min Summer				0.0	5.1				Flood		
360 min Summer				0.0	5.1 5.1				Flood		
480 min Summer				0.0					Flood		
600 min Summer 720 min Summer				0.0 0.0	5.1 5.1				Flood Flood		
960 min Summer				0.0	5.1				Flood		
1440 min Summer				0.0	5.1		5.1		Flood		
2160 min Summer				0.0	5.1		5.1	69.0	11000	O K	
2880 min Summer				0.0	5.1		5.1	52.8		ОК	
4320 min Summer				0.0	4.9		4.9	31.4		ОК	
5760 min Summer				0.0	4.7		4.7	20.1		ΟK	
7200 min Summer				0.0	4.5		4.5	14.2		ОК	
8640 min Summer	9.425	0.175		0.0	4.3	4	4.3	11.3		οк	
10080 min Summer				0.0	4.0	4	4.0	10.2		ОК	
15 min Winter	9.637	0.387		0.0	5.1	5	5.1	55.2		ОК	
30 min Winter	9.724	0.474		0.0	5.1	Ę	5.1	82.8	Flood	Risk	
60 min Winter	9.812	0.562		0.0	5.1	5	5.1	114.8	Flood	Risk	
120 min Winter	9.873	0.623		0.0	5.1				Flood		
180 min Winter	9.905	0.655		0.0	5.1	<u> </u>	5.1	146.8	Flood	Risk	
	Stor	m	Rain	Flood	ed Discha	arge T	ime-	Peak			
	Even	t	(mm/hr)	Volum (m³)			(min	ls)			
			110.470			52.2		41			
		Summer	76.795			39.6		56			
		Summer	51.259			22.4		80			
		Summer	31.024			19.8		126			
		Summer	23.199			59.0		182			
		Summer	18.867			34.0		234			
		Summer	14.044)6.4		296 260			
		Summer Summer	11.322 9.572			22.4 35.5		360 426			
		Summer	9.572			16.8		426 492			
		Summer	6.744			±0.0 56.5		492 626			
		Summer	4.989			96.6		892			
		Summer	3.734			34.0		1272			
		Summer	3.064			56.3		1628			
		Summor	2 240					2220			

6

©1982-2019 Innovyze

2.340

1.954

1.555

1.441

4320 min Summer 5760 min Summer

8640 min Summer

10080 min Summer

7200 min Summer 1.716

15 min Winter 110.470

30 min Winter 76.795

60 min Winter 51.259

120 min Winter 31.024

180 min Winter 23.199

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

420.6

469.4

516.0

561.9

607.8

70.6

101.3

138.0

168.8

190.3

2332

3008

3680

4408

5136

43

58

82

126

182

WSP	Group	Ltd			
•					
•					

Date 25/08/2021 09:07

.

Page 2

Micro Drainage

Designed by UKOJG011

File Voided Subbase Design 24.08.2... Checked by XP Solutions Source Cont

Source Control 2019.1

Summary of Results for 100 year Return Period (+40%)

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
240	min W	linter	9.918	0.668	0.0	5.1	5.1	150.9	Flood Risk
360	min W	linter	9.914	0.664	0.0	5.1	5.1	149.8	Flood Risk
480	min W	linter	9.897	0.647	0.0	5.1	5.1	144.3	Flood Risk
600	min W	linter	9.877	0.627	0.0	5.1	5.1	138.1	Flood Risk
720	min W	linter	9.857	0.607	0.0	5.1	5.1	131.2	Flood Risk
960	min W	linter	9.819	0.569	0.0	5.1	5.1	117.7	Flood Risk
1440	min W	linter	9.745	0.495	0.0	5.1	5.1	90.4	Flood Risk
2160	min W	linter	9.646	0.396	0.0	5.1	5.1	58.0	O K
2880	min W	linter	9.562	0.312	0.0	5.0	5.0	35.9	O K
4320	min W	linter	9.450	0.200	0.0	4.5	4.5	14.7	O K
5760	min W	linter	9.413	0.163	0.0	3.9	3.9	9.9	O K
7200	min W	linter	9.400	0.150	0.0	3.4	3.4	8.3	O K
8640	min W	linter	9.391	0.141	0.0	3.1	3.1	7.4	O K
10080	min W	linter	9.386	0.136	0.0	2.9	2.9	6.8	O K

	Stor: Even		Rain (mm/hr)	Flooded Volume (m ³)	Discharge Volume (m³)	Time-Peak (mins)
240	min	Winter	18.867	0.0	207.0	236
360	min	Winter	14.044	0.0	232.1	336
480	min	Winter	11.322	0.0	250.1	388
600	min	Winter	9.572	0.0	264.7	462
720	min	Winter	8.345	0.0	277.3	536
960	min	Winter	6.744	0.0	299.5	682
1440	min	Winter	4.989	0.0	333.2	956
2160	min	Winter	3.734	0.0	375.1	1328
2880	min	Winter	3.064	0.0	411.2	1672
4320	min	Winter	2.340	0.0	472.1	2296
5760	min	Winter	1.954	0.0	526.7	2944
7200	min	Winter	1.716	0.0	578.9	3672
8640	min	Winter	1.555	0.0	630.3	4400
10080	min	Winter	1.441	0.0	681.7	5072

SP Group	Ltd												Pag	ge 3
														licro
ate 25/08	/2021	09:07				Des	igned [by UK	OJG01	1				rainac
ile Voide		ase D	esign	24.08	3.2		cked b							
? Solutio	ns					Sou	rce Co	ntrol	2019	.1				
					1	Rainf	all De	tails	5					
		n Peri Rainfa Sit	Data 1	ars) sion cion GB Type	262004	19093	3 SS 62	: 21 004 90 Po:	int Lo	ortest S ongest S	Cv (Wi Storm (Storm (mmer) nter) mins) mins)	0.840 15 10080	
		Sum	mer Sto	orms	т	limo 7	man D		Yes	Clima	te Cha	nge %	+40	
					<u>1</u>	Illie F	Area Di	Lagrai						
					Т	'otal A	rea (ha) 0.33	9					
Time From:	(mins) To:	Area (ha)	Time From:	(mins) To:	Area (ha)	Time From:	(mins) To:	Area (ha)	Time From:	(mins) To:	Area (ha)	Time From:	(mins) To:	Area (ha)
0 4 8 12	8 12	0.121 0.115 0.019 0.015	24 28 32 36	32 36	0.008 0.007 0.006 0.005	48 52 56 60	56 60	0.003 0.002 0.002 0.001	72 76 80 84	80 84	0.001 0.001 0.001 0.000	96 100 104 108	104 108	0.000 0.000 0.000 0.000
16 20	20	0.013 0.010	40 44	44	0.004 0.003	64 68	68	0.001	1	92	0.000	112	116	0.000

WSP Group Ltd		Page 4
• •		Micro
Date 25/08/2021 09:07	Designed by UKOJG011	Drainage
File Voided Subbase Design 24.08.2	Checked by	Diamage
XP Solutions	Source Control 2019.1	
Storage is (<u>Model Details</u> Online Cover Level (m) 10.000	
Porous	s Car Park Structure	
Invert Le	(mm/hr) 1000 Length (m) 58.0 on (1/s) 396.3 Slope (1:X) 100.0 y Factor 10.0 Depression Storage (mm) 5 Porosity 0.30 Evaporation (mm/day) 0 evel (m) 9.250 Membrane Depth (m) 255	
	© Optimum Outflow Control	
-	it Reference MD-SHE-0103-5100-1250-5100 ign Head (m) 1.250	
	n Flow $(1/s)$ 5.1	
	Flush-Flo™ Calculated	
	Objective Minimise upstream storage	
	Application Surface	
	mp Available Yes iameter (mm) 103	
	rt Level (m) 9.300	
Minimum Outlet Pipe Di		
Suggested Manhole Di	iameter (mm) 1200	
Control Points Head (m) FL	Low (1/s) Control Points Head (m) Flo	w (l/s)
Design Point (Calculated) 1.250	5.1 Kick-Flo® 0.772	4.1
Flush-Flo™ 0.368	5.1 Mean Flow over Head Range -	4.5
	d on the Head/Discharge relationship for the Hyd l device other than a Hydro-Brake Optimum® be ut ated	—

Depth (m)	Flow (l/s)								
0.100	3.4	0.800	4.1	2.000	6.3	4.000	8.8	7.000	11.5
0.200	4.8	1.000	4.6	2.200	6.6	4.500	9.3	7.500	11.9
0.300	5.1	1.200	5.0	2.400	6.9	5.000	9.8	8.000	12.2
0.400	5.1	1.400	5.4	2.600	7.2	5.500	10.2	8.500	12.6
0.500	5.0	1.600	5.7	3.000	7.7	6.000	10.7	9.000	12.9
0.600	4.8	1.800	6.0	3.500	8.3	6.500	11.1	9.500	13.3

Appendix D

MAINTENANCE PLAN

)

wsp

LIDL UK

BLACKPILL, SWANSEA

Preliminary Maintenance Plan

PROJECT NO. 70050327

DATE: AUGUST 2021

WSP

1 Capital Quarter Tyndall Street Cardiff CF10 4BZ

Phone: +44 2920 769 200

WSP.com

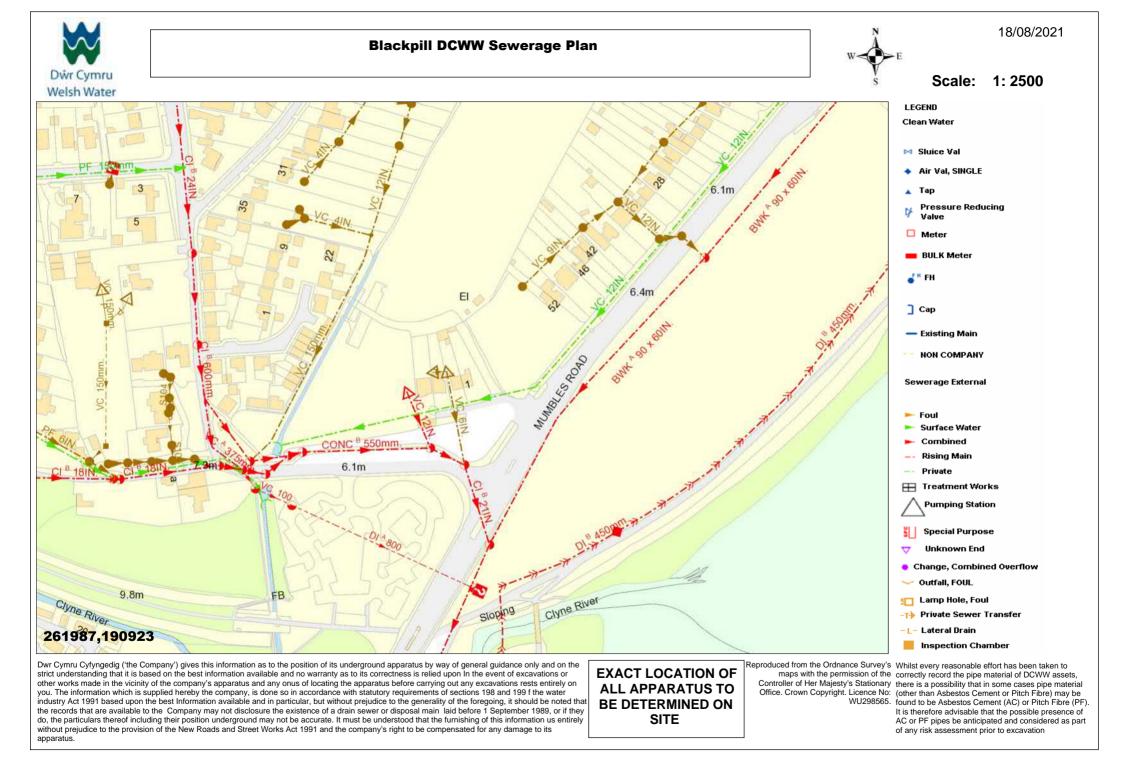
E: March 18				REV:	\\ \$D		
HECKED: AK PROVED: JDP (1) AND (1)			SC02	P01	· ·		
Sions: P01	24/07/18	PERMEABLE PAVEMENTS:	OPERATION AND MAINTENANCE		DRAWING STATUS: P01		
PER	MEABLE PAV	/EMENTS: OPE	RATION AND MAIN	ENANCE			
		OPERATION /	and maintenance	E SCHEDULE	1		
ELEMENT	OWNERSHIP	MAINTENANCE SCHEDULE	REQUIRED #	ACTION	TYPICAL FREQUENCY		
	REGULAR MAINTENANCE		BRUSHING AND VACUUMING SWEEP OVER WHOL		ONCE A YEAR, AFTER AUTUMN LEAF FALL, OR REDUCED FREQUENCY AS REQUIRED, BASED ON SITE-SPECIFIC OBSERVATIONS OF CLOGGING OR MANUFACTURER'S RECOMMENDATIONS - PAY PARTICULAR ATTENTION TO AREAS WHERE WATER RUNS ONTO PERVIOUS SURFACE FROM ADJACENT IMPERMEABLE AREAS AS THIS AREA IS MOST LIKELY TO COLLECT THE MOST SEDIMENT		
		OCCASIONAL	STABILISE AND MOW CONTRIE AREAS	UTING AND ADJACENT	AS REQUIRED		
	MAINTENANCE		REMOVAL OF WEEDS OR N GLYPHOSATE APPLIED DIRECTL AN APPLICATION RATHER	Y INTO THE WEEDS BY	AS REQUIRED – ONCE PER YEAR ON LESS FREQUENTLY USED PAVEMENTS.		
PERVIOUS PAVEMENTS			REMEDIATE ANY LANDSCAPIN VEGETATION MAINTENANCE OR RAISED TO WITHIN 50MM OF PAVING	SOIL SLIP, HAS BEEN	AS REQUIRED		
		REMEDIAL ACTIONS	REMEDIATE WORK TO ANY DI AND CRACKED OR BROKEN DETRIMENTAL TO THE STRUCTU A HAZARD TO USERS, AND R MATERIAI	BLOCKS CONSIDERED IRAL PERFORMANCE OR EPLACE LOST JOINTING	AS REQUIRED		
			REMOVAL OF WEEDS OR N GLYPHOSATE APPLIED DIRECTL AN APPLICATION RATHER	Y INTO THE WEEDS BY	EVERY 10 TO 15 YEARS OR AS REQUIRED (IF INFILTRATION PERFORMANCE IS REDUCED DUE TO SIGNIFICANT CLOGGING)		
			INITIAL INSPE	CTION	MONTHLY FOR THREE MONTHS AFTER INSTALLATION		
		MONITORING	INSPECT FOR EVIDENCE O AND/OR WEED GROWTH – REMEDIAL AG	IF REQUIRED, TAKE	THREE MONTHLY, 48H AFTER LARGE STORMS IN FIRST SIX MONTHS		
			INSPECT SILT ACCUMULATION APPROPRIATE BRUSHIN		ANNUALLY		
			MONITOR INSPECTIO		ANNUALLY		

File name D:\STANDARD DETAILS\WSP STANDARD DETAILS - SUDS.DWG, printed on 21 September 2018 12:25:14, by Faulkner, Oliver

JECT: VA	SP ST		DETAILS	PROJECT No:		
:: Ma CKED: AK	ırch 1 8		DRAWING NO:	SC03	rev: P01	wsp
sions: po [.]		24/07/18	VEGETATED AREAS: OPER	ATION AND MAINTENANCE		DRAWING STATUS: P01
e: V	EGETA		AS: OPERATIC	ON AND MAINTENANCE		
			OPERATION A	AND MAINTENANCE SCI	HEDULE	
ELEMEN	NT O'	WNERSHIP	MAINTENANCE SCHEDULE	REQUIRED ACTION		TYPICAL FREQUENCY
				REMOVAL OF LITTER AND DEB	RIS	MONTHLY (OR AS REQUIRED)
	REGULAR MAINTENANCE			MANAGEMENT OF OTHER VEGETATION A OF NUISANCE PLANTS	MONTHLY (AT START, THEN AS REQUIRED)	
				INSPECTION OF INLETS AND OU	INSPECT MONTHLY	
TREES				CHECK TREE HEALTH AND APPRC MANAGEMENT OF TREE	ANNUALLY	
	OCCASIONAL MAINTENANCE			REMOVAL OF SILT BUILD-UP FROM I SURFACE AND REPLACEMENT OF M REQUIRED	ANNUALLY, OR AS REQUIRED	
				WATER		AS REQUIRED (I.E. IN PERIODS OF DROUGHT) IN CONSULTATION WITH ARBORICULTURALIST /LANDSCAPE ARCHITECT
			MONITORING	INSPECT SILT ACCUMULATION RATES AN APPROPRIATE REMOVAL FREQUEI		EVERY 6 MONTHS

March 18	STANDARD	DRAWING NO:		REV:	\\S D
Ked: AK Oved: JDP	Payna, Julian 2018.00.25 14.00.41		SC04 P01		
ons: P01	24/07/18	BIORETENTION SYSTEM	S: OPERATION AND MAINTENANCE		DRAWING STATUS: P01
BIOR	ETENTION S	SYSTEMS: OP	ERATION AND MAINTEN	NANCE	
		OPERATION	and maintenance s	SCHEDULE	
ELEMENT	OWNERSHIP	MAINTENANCE SCHEDULE	REQUIRED ACTIO	Ν	TYPICAL FREQUENCY
			INSPECT INFILTRATION SURFACE FO PONDING, RECORD DE-WATERING FACILITY AND ASSESS STANDING WA UNDERDRAIN (IF APPROPRIATE) TO MAINTENANCE IS REQUIF	TIME OF THE ATER LEVELS IN DETERMINE IF	QUARTERLY
		REGULAR INSPECTIONS	CHECK OPERATION OF UNDERDRAINS OF FLOWS AFTER RAI	ANNUALLY	
			ASSESS PLANTS FOR DISEASE INFECTION, POOR GROWTH , INVASIVE SPECIES ETC. AND REPLACE AS NECESSARY		QUARTERLY
			INSPECT INLETS AND OUTLETS FC	QUARTERLY	
BIORETENTION SYSTEMS			REMOVAL OF LITTER AND SURFACE WEEDS	e debris and	QUARTERLY (OR MORE FREQUENTLY FOR TIDINESS OR AESTHETIC REASONS)
		REGULAR MAINTENANCE	REPLACEMENT OF ANY PLANTS TO MAINTAIN PLANTING DENSITY		AS REQUIRED
			REMOVAL OF SEDIMENT, LITTER , BUILD-UP FROM AROUND INLET: FOREBAYS	QUARTERLY TO BIANNUALLY	
		OCCASIONAL	INFILL ANY HOLES OR SCOUR IN MEDIUM, IMPROVE EROSION PRO REQUIRED		AS REQUIRED
		MAINTENANCE	REMOVAL OF WEEDS OR MANAGE GLYPHOSATE APPLIED DIRECTLY INTO AN APPLICATION RATHER THAN	THE WEEDS BY	AS REQUIRED
		REMEDIAL ACTIONS	REMOVAL AND REPLACEMENT FILTER VEGETATION ABOVE	MEDIUM AND	AS REQUIRED BUT LIKELY TO BE > 20 YEARS

File name D:\STANDARD DETAILS\WSP STANDARD DETAILS - SUDS.DWG, printed on 21 September 2018 12:25:49, by Faulkner, Oliver


JECT:			PROJECT No:			
WSF	P STANDARD	DETAILS		-	MSD	
E: March 18 ECKED: AK PROVED: JDP		DRAWING NO: SC06			יוריי	
'ISIONS: P01	24/07/18	FILTER DRAINS: OPERAT	ION AND MAINTENANCE		DRAWING STATUS: P01	
E: FILT	ER DRAINS:	OPERATION A	ND MAINTENANCE			
		OPERATION	AND MAINTENANG	CE SCHEDULE		
ELEMENT	OWNERSHIP	MAINTENANCE SCHEDULE	REQUIRED	ACTION	TYPICAL FREQUENCY	
			REMOVAL OF LITTER (INCLU DEBRIS FROM FILTER DRA CHAMBERS AND PRE-T	MONTHLY OR AS REQUIRED		
			INSPECTION OF FILTER DRAIN PIPEWORK AND CONTROL SY CLOGGING, STANDING WATER /	STEMS FOR BLOCKAGES,	MONTHLY	
		REGULAR MAINTENANCE	INSPECTION OF PRE-TREATME PERFORATED PIPEWORK FOR ESTABLISH APPROPRIATE SILT	SILT ACCUMULATION AND	EVERY SIX MONTHS	
FILTER DRAINS			REMOVAL OF SEDIMENT FROM	PRE-TREATMENT DEVICES	EVERY SIX MONTHS OR AS REQUIRED	
			REMOVAL OR CONTROL TREE ENCROACHING THE SIDES OF RECOMMENDED METHODS (I 3998:20	THE FILTER DRAIN, USING EG NJUG, 2007 OR BS		
		OCCASIONAL MAINTENANCE	AT LOCATIONS WITH HIGH PC SURFACE GEOTEXTILE AND F REPLACE OVERLAYING	REPLACE, AND WASH OR	EVERY 5 YEARS OR AS REQUIRED	
			CLEAR PERFORATED PIPE	WORK OF BLOCKAGES	AS REQUIRED	

File name D:\STANDARD DETAILSWSP STANDARD DETAILS - SUDS.DWG, printed on 21 September 2018 12:26:20, by Faulkner, Oliver

Appendix E

EXISTING SEWER RECORDS

)

Appendix F

GROUND INVESTIGATION REPORT

PHASE 2 GROUND INVESTIGATION

Lidl Great Britain Ltd 675 Halfway Garage, Mumbles

Client: Lidl Great Britain Ltd

Remada Ltd www.remada.co.uk

> 730.03.02 August 2021

Executive Summary

Remada Ltd was commissioned by Lidl Great Britain Ltd (hereafter 'the Client') to undertake a Phase 2 Ground Investigation for a proposed new retail store at Former Halfway Garage, Mumbles Road, Mumbles, Swansea SA3 5AT at the location indicated in **Figure 1**. This report follows a Phase 1 Preliminary Risk Assessment (Remada report reference 730.02.01) issued in April 2021.

Summary of Phase 1 Desk Study

The earliest available mapping dated 1878 shows the site to be predominantly occupied by fields, marshland and one residential property occupying the western area. Between 1921 and 1938, a row of residential properties fronting onto Mumbles Road have been constructed. However, by 1948, the central portion of these properties on-site (namely Nos. 54, 56 and 58) have been removed and their position taken by 'Halfway Garage'. By 1993 the garage has been reconfigured and was operating as a Fuel Filling Station. By the time of Remada's site walkover in April 2021, all structures associated with the garage have been removed, as well as the former No. 60 Mumbles Road in the western area.

The Coal Authority Consultants Mining Reports states that no past mining has been recorded and the risk of probable unrecorded shallow mining as 'none'.

The site is in an Intermediate probability radon area (3 to 5% of homes are estimated to be at or above the Action Level). Basic radon protective measures are necessary in the construction of new dwellings or extensions.

Intrusive Investigation

Based on the findings of our Review of Vendors SI & Remediation Reports letter (Ref: 730.01.01) dated 28th January 2020, three (3 No.) cable percussive boreholes were positioned within the proposed store footprint to a depth of 15m or refusal. Four (4 No) CBR tests were conducted in the proposed car park. Four (4 No) ground gas monitoring visits were scheduled for the site to provide the minimum required by C665.

The investigation comprised the drilling of three (3 No) cable percussive boreholes (BH401 – BH403), execution of four (4 No.) CBR tests, two soakage tests (SA1 – SA2) and three trial pits (TP1 – TP3) at locations indicated on **Figure 2** between 27th and 29th April 2021.

Exploratory holes BH401, BH402 and BH403 were located within the general vicinity of the proposed store. Obvious Made Ground was encountered within all exploratory holes and was present to depths of between 1.45m and 2.4m bgl, where proven. It should be noted that deeper made ground, in excess of 4m, is likely to be encountered in some areas associated with the backfilling of the former tank excavations.

According to the published geology superficial deposits beneath the majority of the site are indicated to comprise Aeolian Blown Sand Deposits. However, the material encountered underlying the made ground on-site typically comprised dark brown sandy gravelly CLAY and dark grey SILT, with localised sand lenses and layers of spongy brown fibrous PEAT. It is considered that these deposits are more consistent with Alluvium, this is indicated to be present along the western part of the site that could also be present beneath the Blown Sand Deposits.

Medium dense to dense clayey sandy GRAVEL with low cobble content was encountered underlying the cohesive deposits within the three cable percussive boreholes at depths of between 6.0m (BH403) and 6.5mbgl (BH402).

Light brown medium to coarse SANDSTONE was encountered within two of the cable percussive boreholes at depths of 6.95m (BH402) and 7.65m bgl (BH403). This bedrock is considered representative of the South Wales Lower Coal Measures Formation identified on the BGS mapping.

Human Health Assessment

The results of soil chemical analysis were compared to Human Health Generic Assessment Criteria for commercial land use. None of the analytes tested were detected at concentrations that exceeded the human health GAC protective of on-site workers.

Water Resources Assessment

The groundwater identified within the granular (deeper) deposits is considered to be representative of the Secondary A Aquifer underlying the site. Whilst this is considered to be of low sensitivity, the site is located adjacent to the River Clyne and Swansea Bay, and hydraulic connectivity is anticipated between the groundwater and these water features.

The concentrations of contaminants with groundwater sampled from have been compared with the Water Framework Directive Regulations 2015 Schedule 5 General Quality of Groundwater as an applicable Environmental Quality Standards (EQS) for Secondary Aquifers. The MAC-EQS level has been adopted. There are no recorded exceedances of the adopted MAC-EQS levels for any of the determinands screened within the three groundwater samples.

In addition, it should be noted that the site will be predominantly covered with the building and areas of hardstanding. Therefore, the risk of leaching of contaminants as a result of infiltration of groundwater is likely to be limited. Therefore, the risk to groundwater from contaminants within the made ground at the site is considered to be low and does not warrant further consideration.

Waste Classification

In general, the results of the chemical analyses indicate that the material would be classified as non-hazardous waste.

Elevated concentrations of Total Petroleum Hydrocarbon (TPH) above 1,000mg/kg have been identified. The TPH appears to be weathered diesel and therefore this material would also be classified as non-hazardous waste. While waste generated is likely to be classified as non-hazardous, there is the potential for higher concentrations of TPH to be encountered. If encountered during the redevelopment materials exhibiting evidence of hydrocarbon contamination should be segregated and analysed to determine precise waste classification.

Geotechnical Assessment

Shallow spread foundations are not considered to be a suitable foundation solution due to the depth of made ground and the presence of highly compressible Alluvium beneath. It is therefore considered that a piled foundation solution or potentially ground improvement would be the most suitable option for the site.

Ground improvement techniques such as vibro-replacement stone or concrete columns could be considered for the site. Both ground improvement techniques involve inserting a vibrating poker into the ground, which displaces the soil. The resultant void is then infilled with either stone or concrete. However, the presence of soft Alluvium which included layers of peat may not provide the lateral support required for these techniques to work adequately. In addition, given that the proposed development comprises a car parking area at ground floor with the store located above this design is likely to be more suited to a piled foundation solution.

The proposed development comprises a car park at ground level with the store located at first floor level. Therefore, it is anticipated that there will be limited floor constructed at ground level. Due to the presence of made ground across the site in excess of 600mm it is recommended that the floor slab is fully suspended.

It should also be noted that the site is located in an area that is classified as an intermediate probability radon area and as such basic radon protective measures should be included within the floor slab constructed at ground level.

A Design Sulphate Class DS-1 is considered appropriate for buried concrete and an ACEC Class of AC-1 is considered appropriate for the location.

Six soakaway tests were conducted within the two test pits (SA1 and SA2) located adjacent to Mumbles Road. The results indicated a rapid infiltration into the made ground underlying the site during Remada's intrusive investigation. However, the site has historically been used as a fuel filling station and hydrocarbons have been recorded within the underlying soils circa 2m depth. Furthermore, the natural strata underlying the made ground

typically comprises Alluvium (soft clays with layers of peat) to depths of between 6.0 and 6.3mbgl. Consequently, soakaways are not considered suitable for the proposed development.

Groundwater was found to be resting within the three monitoring wells at depths of between 4.22 and 5.44mbgl. It is recommended that groundwater levels are monitored again prior to construction.

Ground Gas

The results of four rounds of gas monitoring visits placed the site into Characteristic Situation 1 and therefore ground gas protection measures will not be required within the proposed building. However, the site is located in an Intermediate Probability Radon Area and Basic radon protective measures are necessary within the design of the proposed retail store.

1	ΙΝΤΙ	RODUCTION	6
	1.1 1.2	Objectives	
	1.2	PREVIOUS REPORTS	
	1.4	LIMITATIONS	
2	SUN	IMARY OF PREVIOUS REPORTS	. 8
-	2.1	REMADA'S REVIEW OF VENDORS SI & REMEDIATION REPORTS LETTER (JANUARY 2020)	
	2.1	REMADA'S REVIEW OF VENDORS SI & REMEDIATION REPORTS LETTER (JANUARY 2020) REMADA'S PHASE 1 DESK STUDY (APRIL 2021)	
3	ENV	IRONMENTAL & GEOTECHNICAL INVESTIGATION METHODOLOGY	.14
	3.1	Investigation Strategy	14
	3.2	INTRUSIVE INVESTIGATION	
	3.3	IN-SITU TESTING	
	3.4	SOIL SAMPLING	
	3.5	GAS & GROUNDWATER	
	3.5 3.6	QUALITY ASSURANCE AND QUALITY CONTROL LABORATORY ANALYSIS & TESTING	
4	GEC	DTECHNICAL & ENVIRONMENTAL INVESTIGATION FINDINGS	
	4.1	GROUND CONDITIONS	
	4.2	IN-SITU TESTING	
	4.3	SOIL OBSERVATIONS.	
	4.4	GROUNDWATER OBSERVATIONS	
	4.5 4.6	Geotechnical Testing	
	4.0	GROUND GAS MONITORING RESULTS	
5		IERIC QUANTITATIVE RISK ASSESSMENT	
	5.1	HUMAN HEALTH RISK ASSESSMENT	
	5.2	COMPARISON OF SOIL ANALYSIS RESULTS WITH HUMAN HEALTH GAC	
	5.3	Controlled Waters Risk Assessment	
	5.4	GROUND GAS ASSESSMENT	23
	5.5	REVISED CONCEPTUAL SITE MODEL	
	5.6	WASTE CLASSIFICATION	
	5.7	HEALTH & SAFETY CONSIDERATIONS	24
6	GEC	DTECHNICAL SITE ASSESSMENT	26
	6.1	GEOTECHNICAL CONSIDERATIONS	26
	6.2	FOUNDATIONS	
	6.3	FLOOR SLAB	
	6.4 6.5	IMPORTED FILL	
	6.6	EXCAVATIONS AND TEMPORARY WORKS	
	6.7	PROTECTION OF BURIED CONCRETE	
	6.8	Soakaway Tests	
	6.9	GENERAL CONSTRUCTION ADVICE	
7	CON	ICLUSIONS & RECOMMENDATIONS	30
	7.1	CONCLUSIONS	30
	7.2	RECOMMENDATIONS	
	7.3	GROUND GAS	31
R	EFERE	NCES & GUIDANCE	32
S		IMITATIONS	33

TABLES

- Table 1
 Outline Conceptual Site Model
- Table 2Gas & Groundwater Monitoring Data
- Table 3 Comparison of Soil Chemical Analyses with GAC
- Table 4 Comparison of Groundwater Chemical Analyses with MAC-EQS
- Table 5
 Refined Conceptual Site Model
- Table 6 Idealised Soil Profile
- Table 7 Estimated Safe Working Loads

GRAPHS

Graph 1	Plot of Corrected SPT N Values vs Depth
Graph 2	Plot of Mass Shear Strength vs Depth

FIGURES

Figure 1	Site Location Plan
Figure 2	Exploratory Hole Location Plan

EXPLORATORY LOGS

APPENDICES

Appendix A	SPT Hammer Energy Test Certificate
Appendix B	Soakage Test Results
Appendix C	Dynamic Plate Load Test Results
Appendix D	Low Flow Testing Certificates
Appendix E	Laboratory Chemical Analyses – Soils
Appendix F	Laboratory Chemical Analyses - Groundwater

Appendix G Laboratory Geotechnical Tests

Issue No	Date	Prepared By		Technical Re	view	Authorised	
01	01.07.2021	P Dickinson	P.D.el	P Welburn	PAlveren	G Jones	Hones
02	05.08.2021	P Dickinson	PD.cl.	P Welburn	PAlveran	G Jones	Jones

1 INTRODUCTION

Remada Ltd was commissioned by Lidl Great Britain Ltd (hereafter 'the Client') to undertake a Phase 2 Ground Investigation for a proposed new retail store at Former Halfway Garage, Mumbles Road, Mumbles, Swansea SA3 5AT at the location indicated in **Figure 1**.

1.1 Objectives

The objectives of this assessment are as follows:

- to examine whether there have been any potentially contaminative uses on the site or nearby land;
- to develop a conceptual model of the site to identify plausible pollutant linkages;
- to assess ground conditions in relation to the proposed development in relation to construction design issues including the presence, nature, likely severity and extent of soil and groundwater contamination, which may be present, its potential environmental impact and likely requirement for further work; and
- Provide preliminary foundation design recommendations for the proposed development.

1.2 Scope of Work

The scope and layout of this investigation and report is generally in accordance with BS10175:2011+A2 2017 and the Environment Agency's Land Contamination Risk Management guidance for land contamination reports.

The scope of work comprised:

- Three (3 No) cable percussive boreholes with in-situ SPTs in proposed store footprint to 15m depth.
- 3 No combined groundwater and gas monitoring standpipes installed within cable percussive boreholes.
- 4 No California Bearing Ratio (CBR) tests;
- 4 No. soakaway tests in accordance with BRE 365.
- Suite of geotechnical classification and strength tests;
- 5 No soil sample suites for chemical analysis of CLEA metals, asbestos, speciated hydrocarbons, cyanide and phenols to delineate any soil contamination;
- 3 No groundwater sample suites for chemical analysis of CLEA metals, asbestos, speciated hydrocarbons, cyanide and phenols;
- 4 No ground gas and groundwater monitoring visits to satisfy planning requirements; and
- Combined Factual & Interpretative Geoenvironmental Report.

1.3 **Previous Reports**

The following Remada reports have previously been prepared for the site:

- Remada's Review of Vendors SI & Remediation Reports letter (ref: 730.01.01) issued on 28th January 2020.
- Phase 1 Site Investigation & Preliminary Risk Assessment, Remada Ltd Report ref: 730.02.01 issued in April 2021.

1.4 Limitations

The comments given in this report and the opinions expressed are based on the information reviewed and observations during site work. However, there may be conditions pertaining to the site that have not been disclosed by this assessment and therefore could not be taken into account.

2 SUMMARY OF PREVIOUS REPORTS

2.1 Remada's Review of Vendors SI & Remediation Reports letter (January 2020)

The appended review notes from this letter are reproduced below:

2.1.1 Environmental Setting

The site is location at 54 Mumbles Road, Blackpill, Swansea SA3 5AU, within a predominantly residential area. The site was historically a petrol filling station operated by Shell that was decommissioned in 2017. The desk study undertaken by URS indicated that the site was first developed as a garage circa 1948 and was subsequently redeveloped into a petrol filling station circa 1971. The URS desk study indicated that there were records of eight underground storage tanks (USTs) at the site installed in 1975 and an LPG tank (installation date unknown). Subsequent investigation reports indicated that there were also six historical slurry filled tanks present at the site.

The subsequent site investigation reports indicate that in May 2013, Shell identified a potential loss of integrity to a suction fuel line, running between Tank 3 (diesel) to forecourt customer dispenser 1 and 2.

The nearest surface water feature was an unnamed stream located approximately 80m to the north of the site.

Ground conditions beneath the site are indicated to comprise Blown Sands beneath the southeast part of the site and Alluvium beneath the northwest overlying South Wales Lower Coal Measures Formation. The superficial deposits and bedrock are both classified as Secondary A Aquifers. The site is not located with a Source Protection Zone (SPZ).

A review of the BGS GeoIndex provided a slightly different geological interpretation than that given by URS comprising the following:

- Presence of Artificial Ground comprising undivided landscaped ground;
- Blown Sand located beneath the eastern part of the site;
- Raised Storm Beach Deposits comprising sand and gravel located beneath the western part of the site.

According to the Non-Residential Coal Authority Mining Report, the property is not within the zone of likely physical influence on the surface from past underground workings. A review of the Coal Authority website confirmed that the site was not located within a development high risk area and there were no records of mine entries within or within the immediate vicinity of the site.

2.1.2 Environmental Site Assessment Reports

Two phases of intrusive investigation were undertaken by URS in 2013 and 2014 and reported in February 2014 and June 2014 respectively. The purpose of the URS investigations was to support Shell with the provision of environmental information and to assist in approvals to support a possible site redevelopment. The first investigation (February 2014) comprised the drilling of eleven boreholes followed by installation of four soil vapour monitoring wells and seven groundwater monitoring wells. The second investigation (June 2014) comprised the drilling of five further boreholes and installation of groundwater monitoring wells. In 2015 URS undertook a further groundwater and vapour monitoring from the monitoring wells installed during the previous phases of investigation and in 2016 AECOM undertook an intrusive investigation where four additional monitoring wells were installed. Groundwater monitoring was undertaken from the existing and newly installed wells as part of the AECOM 2016 investigation. In addition, further groundwater monitoring was undertaken by AECOM in 2017, prior to decommissioning and demolition of the petrol filling station, with the results presented in a factual report with no interpretation provided.

The investigations encountered made ground to a maximum depth of 3.6m below ground level (bgl) overlying sand to a maximum depth of 3.57m bgl resting upon peat and soft silt with organic material to a maximum recorded depth of 6.0m bgl. The bedrock geology was not encountered within the 6m depth of investigation.

Groundwater was generally found to be resting at depths of between 0.74 and 2.06m bgl across the site.

February 2014 Report

During the intrusive investigations undertaken by URS visual and olfactory evidence of hydrocarbon contaminants of concern were identified in soil and groundwater beneath the site.

A Stage 2 risk assessment was performed on the available soil, groundwater, potable water and vapour data to assess potential risks to human health and controlled water receptors associated with the site.

Concentrations of Contaminants of Concern (CoC) were below the human health generic acceptance criteria (GAC) for continued petroleum use (CPU) and high-density residential use in all soil, vapour and groundwater samples collected during the initial investigation. Asbestos including chrysotile (white), crocidolite (blue) and amosite (brown) asbestos was also identified in made ground taken from seven locations.

However, in soil samples concentrations of CoC exceeded initial Stage 2 controlled waters screening criteria. In groundwater samples, CoC were also identified above the Environmental Quality Standard (EQS) GAC.

June 2014 Report

The report concluded that the identified soil and groundwater key impacts are consistent with historical impacts rather than the suspected loss of integrity from a diesel line between Tank 3 and the pumps, based on chemical signature.

The Stage 2 risk assessment concluded the following:

- Potential risks to on-site workers and off-site residents were considered acceptable.
- Simulated marginal risks to Swansea Bay 160m to the south-east of site from dissolved benzene in BH104 were considered to be acceptable. The absence of significant benzene impact in groundwater at other locations suggests that the benzene may not be as mobile as simulated by the model.
- The site is therefore considered suitable for ongoing petroleum use.

July 2015 Report

The groundwater and vapour monitoring identified that there were concentrations of hydrocarbon CoC above the method detection limits in both groundwater and vapour samples from across the site. No recommendations were provided in the report.

August 2016 Report

Again, concentrations of hydrocarbon contaminants of concern were identified in groundwater and vapour samples above the method detection limits. A Stage 3 risk assessment was undertaken to further assess potential risk to human health and controlled water receptors.

The principal conclusions made by AECOM were as follows:

- Concentrations of CoC measured at the site were considered unlikely to represent an unacceptable risk
 to human health receptors
- Significant risks to Controlled Waters were not identified as part of the Stage 3 risk assessment.

February 2018 Report

The groundwater monitoring was undertaken prior to decommissioning and demolition of the petrol filling station. The results indicated that there remained concentrations of hydrocarbon contaminants of concern above the method detection limits.

2.1.3 Decommissioning, Demolition and Remedial Works

AECOM provided environmental support to Shell during the decommissioning and demolition of the fuel infrastructure and undertook environmental verification. The works, undertaken in three phases, included the decommissioning of sixteen groundwater and four vapour monitoring wells by filling with a bentonite grout mix and the removal of 18 (one double compartment) tanks, several of which were only identified during the decommissioning works. According to the AECOM report subsurface concrete footings from the building and canopy were removed along with sub-surface slabs and concrete cradles surrounding the USTs. Twenty five trial pits were excavated across the site to investigate the presence of potentially abandoned USTs. In total 320 tonnes of asphalt/tarmac, 100 tonnes of concrete, 5,758 tonnes of non-hazardous soil and 377 tonnes of hazardous soil were removed from site. This comprised impacted soils from below the former USTs and the removal of the top 1m of soil from across the site. The resulted excavations were infilled with 2,031 tonnes of imported natural quarried materials and 7,987 tonnes of imported MOT Type 1 material. The report indicated that the backfill materials were compacted but no details of the specification/method used to compact the materials was supplied. Planning permission for the demolition works was granted by Swansea City and County Council on 19th January 2017.

The environmental verification report, prepared by AECOM, indicated that a total of 169 soil samples were analysed. Concentrations of CoC encountered at the site are generally below Commercial GAC, with the exception of isolated made ground samples containing PAHs. AECOM stated that 'As these PAHs are not volatile, the viable pathways are by direct contact and ingestion. This pathway is only relevant in the context of a future use scenario in which ground is exposed at surface. Following the replacement of the upper 1 m of the site with clean backfill, there is currently no viable source-pathway-receptor linkage for these.' In addition, AECOM concluded that there was not an unacceptable risk to off-site residents.

With respect to groundwater AECOM stated that 'benzene concentrations in groundwater sampled from BH104 in February 2017 and April 2017 exceeded the 2016 Site Specific Screening Acceptance Criteria (SSAC) for groundwater, by factors of 4 and 3.2 respectively. BH104 was screened in shallow sand immediately beneath the made ground from 1.6 to 2.8m bgl. This area was subsequently excavated to 4.5m bgl as Excavation D.

Given the removal of a significant volume of both unsaturated and saturated soils from Excavation D to 4.5m, and the limited residual impact which remains in this area, the groundwater samples from this location from prior to the excavation works are not considered representative of the post construction site conditions.'

2.1.4 Lidl Site Redevelopment – Environmental and Waste Issues

The AECOM reports indicate that the significantly impacted soils have been removed from site as part of the decommissioning works. In addition, the top 1m of soil has been excavated and replaced with clean imported materials. Therefore, the majority of the Lidl 'works' will be undertaken within clean imported materials. However, it should be recognised that deeper excavations below approximately 1m depth (e.g. for the delivery ramp and attenuation tank, if required) may encounter hydrocarbon impacted materials. There is the potential for some of the hydrocarbon impacted materials to be classified as hazardous waste, although given the remedial works undertaken by AECOM it is considered likely that most of the material would be classified as non hazardous.

It should be noted that the remediation was undertaken on a voluntary basis and as such there has been minimal dialogue with the regulators (Local Authority and Natural Resources Wales). A letter was received from Natural Resources Wales, dated 3 September 2014 which stated 'We welcome the voluntary remediation approach to this site and recognise the resources that gone into this process. We note that the site is 150m away from the nearest surface water receptor and that there are currently limited or no use of the groundwater in the area, other that to baseflow for the River Clyne. We consider the site to be a lower priority and will not be providing comments at this time.'

Therefore, official approval from the regulators, for the remediation has not been achieved. This would only present an issue if the planning permission for the new Lidl store include environmental conditions and the regulators then disagreed with the risk assessment and work undertaken by AECOM. However, given the response from Natural Resources Wales and the quantity of sampling/analysis undertaken by AECOM it is considered unlikely that there would be a problem going forward, but this cannot be guaranteed.

The top 1m of soil now comprises clean imported materials that will effectively act as a clean cover system. However, it will still be necessary to import clean topsoil/subsoil for use in soft landscaping areas as the physical characteristics of the imported materials will not promote a healthy growing environment.

2.1.5 Lidl Site Redevelopment – Geotechnical

The work undertaken by URS/AECOM to date has been entirely environmental focused and no geotechnical information has been collected. In addition, it should be noted that he maximum depth of investigation undertaken by AECOM was 6m bgl. The window sample holes identified made ground to a depth of 3.6m bgl and in the areas of the former tanks it is anticipated that the made ground will now extend to depths in excess of 4m bgl. Given that the top 1m of soil has been removed from site during the decommissioning works it is considered that most of the former foundations and/or obstructions should have been removed.

Beneath the made ground a sequence of sand, peat and soft silt with organic material was encountered. The sand deposit has been interpreted as a Blown Sand which tends to be in a loose condition with a generally open fabric. Blown Sand is not normally considered a suitable founding stratum due to the potential for unacceptable amounts of settlement. In addition, the underlying peat and soft silt are likely to be highly compressible and also not suitable. The silt extended to the base of the exploratory holes. Therefore, it is considered that piled foundations are likely to be required for the proposed development. Lidl's ground investigation standard 04.2018 specified four window samples boreholes i.e., not greater than 6m depth beneath the store footprint but deep boreholes will be required in order to enable pile design. At present, the likely piling depth is not known and it recommended that a minimum of three cable tool boreholes are bored to a depth 15m beneath the proposed store footprint to enable foundation design.

2.1.6 Lidl Site Redevelopment – Ground Gas

To date, permanent ground gas monitoring has not been undertaken and a minimum of four rounds of ground gas monitoring is required by 04.2018 and typically to discharge planning conditions. There are three potential sources of permanent ground gas associated with the site. These comprise the former petrol filling station, the made ground and the natural peat/organic silt deposits. The proposed site redevelopment comprises a car parking area at ground level with the Lidl Store located, at first floor level, above. The main store area will not require protection measures to prevent the ingress of ground gas. However, there are two areas of construction at ground level and it is considered that protection measures may need to be installed in these areas.

2.2 Remada's Phase 1 Desk Study (April 2021)

The Executive Summary and Conceptual Site Model presented within the Phase 1 Desk Study are reproduced below:

Site Setting

The site is an irregular plot to the north-west of Mumbles Road and to the east of Glyn Crescent. Surfacing comprises a crushed gravel material. Heras fencing forms the southern and south-eastern boundaries, whilst wooden fencing forms the north and western boundaries. The site contains existing buildings labelled as No. 52 and 50 Mumbles Road.

Site History

The earliest available mapping dated 1878 shows the site to be predominantly occupied by fields, marshland and one residential property occupying the western area. Between 1921 and 1938, a row of residential properties fronting onto Mumbles Road have been constructed. However, by 1948, the central portion of these properties on-site (namely Nos. 54, 56 and 58) have been removed and their position taken by 'Halfway Garage'. By 1993 the garage has been reconfigured and was operating as a Fuel Filling Station. By the time of Remada's site walkover in April 2021, all structures associated with the garage have been removed, as well as the former No. 60 Mumbles Road in the western area.

Mining

The Coal Authority Consultants Mining Reports states that no past mining has been recorded and the risk of probable unrecorded shallow mining as 'none'.

Radon

The site is in an Intermediate probability radon area (3 to 5% of homes are estimated to be at or above the Action Level). Basic radon protective measures are necessary in the construction of new dwellings or extensions.

Environmental Risk Assessment

The desk study has identified a number of on-site and off-site potential sources of contamination that would require further investigation. The following is recommended:

- Investigation of the lateral and vertical extent of made ground/fill beneath the proposed store;
- BRE 365 compliant soakaway testing;
- Collection of soil and groundwater samples from the areas identified above for contaminants of concern; and
- Ground gas monitoring.

Geotechnical Assessment

It is recommended that a ground investigation is undertaken to enable preliminary foundation design.

Phase 2 Ground Investigation Halfway Garage, Mumbles 730.03.02, August 2021

Potential Source Areas	Potential Contaminant of Concern	Pathways	Potential Receptor		Exposure Route (Human unless otherwise stated)	lde Lir	tential ntified nkage itigated)	Findings of Ground investigation	Risk (Un- mitigated)	Proposed Remediation (Mitigation) Measures	Residual Risk Estimation
<u>On-site Sources</u> Halfway	Asbestos / Metals As, Be, Cd, Cu, Cr (VI), Cr (III) Hg, Ni, Se, Va, Zn, <i>Boron, TPH</i> /PAH.	Disturbance due to construction plant causing direct contact, dusts, vapours. Direct Contact with occupants of the proposed development Inhalation of fibres / vapours / gases by occupants of proposed development Permeation of water supply pipework	Occupants of the development / building fabric Adjacent residents during construction	•	Direct Soil Ingestion	•	Yes	To be assessed (TBA)	Potential risk	(To be assessed (TBA)	(To be assessed (TBA)
Garage/Shell Garage				•	Indoor Dust ingestion	٠	Yes	As above	Potential risk	ТВА	ТВА
Residential properties				•	Skin Contact with Soils	•	Yes	As above	Potential risk	TBA	ТВА
General Made				•	Skin Contact with Dust	•	Yes	As above	Potential risk	TBA	ТВА
Ground associated with historical				•	Inhalation of Outdoor Dust	٠	Yes	As above	Potential risk	TBA	ТВА
redevelopment.				•	Inhalation of Outdoor Vapours	•	Yes	As above	Potential risk	ТВА	ТВА
<u>Off-site Sources</u>				•	Inhalation of Indoor Vapours	•	Yes	As above	Potential risk	ТВА	ТВА
Oystermouth Tramway/Swansea				•	Inhalation of ground gas	•	Yes	As above	Potential risk	ТВА	ТВА
and Mumbles Railway				•	Inhalation of radon gas	•	Yes	Intermediate Probability Radon Area	Potential risk	Basic radon protection measures	Negligible
London North Western Railway				•	Ingestion via permeated water supply pipework	•	Yes	As above	Potential risk	ТВА	TBA
Coal Yard Residential Housing				•	Direct contact with Secondary (A) Aquifer in Superficial Deposits	•	Yes	As above	Potential risk	TBA	ТВА
Electricity Sub Station		Leachate	Secondary Aquifers &	•	In-direct contact with Secondary (A) Aquifer in bedrock	•	Yes	As above	Potential risk	ТВА	ТВА

 Table 1: Outline Conceptual Site Model

 Direct contact with subsurface soil and/or groundwater during redevelopment works are not assessed as part of the CSM. It is considered that risks to workers will be managed
 as part of any the redevelopment works at the site through the application of health and safety procedures, where required.

3 ENVIRONMENTAL & GEOTECHNICAL INVESTIGATION METHODOLOGY

3.1 Investigation Strategy

Based on the findings of our *Review of Vendors SI & Remediation Reports* letter (Ref: 730.01.01) dated 28th January 2020, three (3 No.) cable percussive boreholes were positioned within the proposed store footprint to a depth of 15m or refusal. Four (4 No) CBR tests were conducted in the proposed car park. Four (4 No) ground gas monitoring visits were scheduled for the site to provide the minimum required by C665.

The investigation comprised the drilling of three (3 No) cable percussive boreholes (BH401 – BH403), execution of four (4 No.) CBR tests, two soakage tests (SA1 – SA2) and three trial pits (TP1 – TP3) at locations indicated on **Figure 2** between 27th and 29th April 2021.

All exploratory holes were logged by a suitably qualified Geo-environmental Engineer in general accordance with the recommendations of BS5930:2015. Detailed descriptions, together with relevant comments, are given in the **Exploratory Hole Logs**.

3.2 Intrusive Investigation

3.2.1 Cable Percussive Boreholes

Three cable percussive boreholes (BH401 – BH403) were undertaken using a Dando 2000 percussive drilling rig and advanced to a target depth of 15m or refusal. However, sandstone bedrock was encountered within two of the boreholes (BH402 at 6.95m, and BH403 at 7.65m) leading to their termination at

Combined Groundwater and Ground Gas monitoring standpipes were installed in all three boreholes.

3.2.2 Trial Pits

All five of the trial pits were excavated using a backhoe excavator, while in full attendance of an experienced geo-environmental consultant. On completion of the trial pits, the materials were replaced in approximately the same order as they were excavated and compacted using the excavator.

3.3 In-Situ Testing

3.3.1 Standard Penetration Tests

Standard Penetration Tests (SPTs) in the window samples were carried out at 1.0m intervals as recorded on the borehole logs to assess the relative density and consistency of soils.

SPTs were conducted in accordance with BS EN ISO 22476-3 and the recorded SPT N-values are summarised on the borehole logs.

The SPT N-values have been corrected based on the Energy Ratio of 65% for the SPT hammer on the window sampling rig. The SPT Hammer Energy Test Report, undertaken in accordance with BS EN ISO 22476-3:2005 is presented in **Appendix A**.

3.3.2 Soakage Tests

Three soakaway tests were undertaken in general in accordance with BRE Digest DG365, Soakaway Design, 2016, at the locations in **Figure 2**. Test results are presented in **Appendix B**.

3.3.3 Falling Weight Deflectometer (FWD) tests

A falling weight deflectometer (FWD) is a device that is designed to simulate the loading of a wheel passing over a roadway and measure its vertical deflection response to that load. During the test, a known weight

is dropped onto a circular load plate on the surface, and the resulting deflection is measured by sensors placed around the load plate. Test results are presented in **Appendix C.**

3.4 Soil Sampling

3.4.1 Environmental

Made ground and natural soils were selected by visual and olfactory means for subsequent analysis. Samples for chemical laboratory testing purposes were collected in amber glass jars, amber glass vials and plastic tubs and retained in a cool box for transport to the laboratory.

3.4.2 Geotechnical

Geotechnical samples were collected at depths indicated on the window sample logs with samples retrieved from within a sleeve line. The disturbed samples were placed in sealed and correctly labelled plastic tubs or bags as appropriate. All geotechnical samples were dispatched to the laboratory for testing with a completed chain of custody.

3.5 Gas & Groundwater

3.5.1 Installations

Combined ground gas and groundwater monitoring standpipes were installed in selected wells with a 50mm diameter slotted HDPE pipe and packed with gravel surround as recorded on the exploratory logs. Wells were completed with 0.5-1m of plain HDPE pipe and bentonite seal, with a gas bung and tap being installed at the top of the pipe.

3.5.2 Monitoring

Ground gas monitoring was undertaken using Geotech GA5000 gas analyser for the parameters reported below. Groundwater levels were measured with a GeoSense OWP30 oil water interface probe.

Permanent ground gas monitoring involved the measurement of the following in the prescribed order:

- Pressure difference between the monitoring well and the atmosphere,
- Peak and steady flow rates of gas into or out of the monitoring well;
- Peak and steady concentrations of carbon dioxide, methane, oxygen (minimum and steady recorded), carbon monoxide, hydrogen sulphide; and
- Depth to groundwater.

Four ground gas monitoring visits were undertaken as a minimum required for a commercial development in accordance with CIRIA C665. Ground gas concentrations were recorded on 6th, 10th, 19th and 25th May 2021 at BH401, BH402 and BH403 and the results are presented in **Table 2**.

3.4.3 Well Development

After installation, all monitoring wells were developed to remove drilling fluids and sediment from the wells.

3.4.4 Well Purging

Prior to groundwater sampling, all wells were purged with a submersible pump. Purging continued until pH, temperature and conductivity values stabilised to silty material, deposits from the bottom of the well, stagnant oxidised water and to attract fresher groundwater from the aquifer into the well.

3.4.5 Well Sampling

Three wells were sampled with submersible pump at the dates indicated in **Table 2**. Dedicated sampling tubes were used for each monitoring well to prevent cross-contamination. An AquaTroll 500 was used to record stabilised pH, temperature and conductivity values during sampling. Groundwater samples were collected in amber glass jars and amber glass vials and retained in a cool box for onwards transport to the laboratory. The low flow sampling test certificates are presented in **Appendix D**.

3.5 Quality Assurance and Quality Control

All samples were submitted to a United Kingdom Accredited Laboratory (UKAS) under a completed chain of custody. The laboratory carried out its own QA/QC programme to ensure that the quality of the analytical data conformed to the appropriate test method protocols.

3.6 Laboratory Analysis & Testing

3.6.1 Chemical Analysis – Soil

Seven (7 No) soil samples were scheduled for the analysis of asbestos, arsenic, barium, beryllium, cadmium, chromium (III & VI), copper, mercury, nickel, lead, selenium, zinc, fraction of organic carbon, Total Petroleum Hydrocarbons (TPHCWG), Polyaromatic Hydrocarbons (PAH), BTEX compounds (benzene, toluene, ethylbenzene and xylene) and phenols.

The results of laboratory chemical analyses are presented at **Appendix E**.

3.6.2 Chemical Analysis - Groundwater

Three (3 No) groundwater samples were scheduled for the analysis of asbestos, arsenic, barium, beryllium, cadmium, chromium (III & VI), copper, mercury, nickel, lead, selenium, zinc, cyanide, fraction of organic carbon, Total Petroleum Hydrocarbons (TPHCWG), Polyaromatic Hydrocarbons (PAH), BTEX compounds (benzene, toluene, ethylbenzene and xylene) and phenols.

The results of laboratory chemical analyses are presented at Appendix F.

3.6.3 Geotechnical

Samples recovered from the boreholes were submitted to an accredited laboratory for the following analyses in general accordance with BS1377:1990:

- 5 No Natural Moisture Contents
- 5 No Plasticity Indices
- 5 No Particle Size Distribution tests
- 3 No Quick Undrained Triaxial Compression Tests; and
- 4 No BRE SD1 suites.

The results of the geotechnical testing are presented at Appendix G.

4 GEOTECHNICAL & ENVIRONMENTAL INVESTIGATION FINDINGS

4.1 Ground Conditions

A summary of the ground conditions encountered during the intrusive investigation is presented below. Exploratory hole logs are presented at the end of the report.

4.1.1 Made Ground

Obvious Made Ground was encountered within all exploratory holes and was present to depths of between 1.45m and 2.4m bgl, where proven. The Made Ground generally comprised sandy gravel composed of mixed lithologies including limestone, mudstone and quartzite. SPT N values recorded in the Made Ground indicated that the relative density ranged from loose to dense.

In BH401, BH404, TP1 and TP2 a gravelly CLAY was encountered beneath the granular Made Ground. This material is not consistent with the anticipated natural geology and as such is likely to be a reworked material that has been interpreted as 'Possible Made Ground'. Therefore, it is considered that Made Ground extended to a more consistent depth of between 2.0 and 2.5mbgl.

It should be noted that deeper Made Ground (in excess of 4mbgl) is likely to be present in parts of the site as a result of backfilling the former tank excavations.

4.1.2 Superficial Deposits

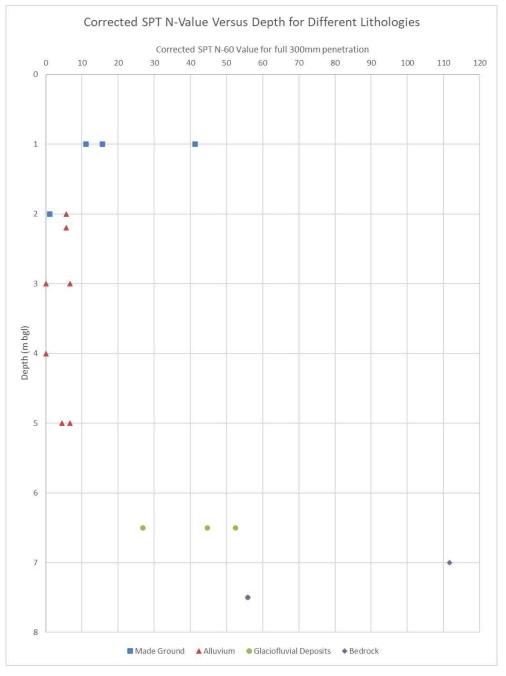
According to the published geology superficial deposits beneath the majority of the site are indicated to comprise Aeolian Blown Sand Deposits. However, the material encountered underlying the made ground on-site typically comprised dark brown sandy gravelly CLAY and dark grey SILT, with localised sand lenses and layers of spongy brown fibrous PEAT. It is considered that these deposits are more consistent with Alluvium, this is indicated to be present along the western part of the site that could also be present beneath the Blown Sand Deposits.

PEAT was encountered within four of the exploratory holes (BH401 – BH403 and TP1) from depths of 2.4 to 2.5m bgl. The peat ranged in thickness between 0.3m in BH402 and 1.2m in BH403. Within the trial pit TP1, this unit was described as 'spongy brown fibrous PEAT', which corroborated with the strata recovered from the cable percussive boreholes. However, in BH403 below 3.0m bgl, a plastic dark brown mottled light grey clayey fibrous PEAT was also recovered and this was not identified in any of Remada's other exploratory holes.

Medium dense to dense clayey sandy GRAVEL with low cobble content was encountered underlying the cohesive deposits within the three cable percussive boreholes at depths of between 6.0m (BH403) and 6.5mbgl (BH402). The gravel typically comprised angular to rounded mudstone, siltstone, and sandstone, whilst the cobbles were of equivalent stratum types. These deposits have been interpreted as Glaciofluvial Ice Contact Deposits that the BGS indicate to be present in the local area.

4.1.3 Bedrock

Light brown medium to coarse SANDSTONE was encountered within two of the cable percussive boreholes at depths of 6.95m (BH402) and 7.65m bgl (BH403). This bedrock is considered representative of the South Wales Lower Coal Measures Formation identified on the BGS mapping.



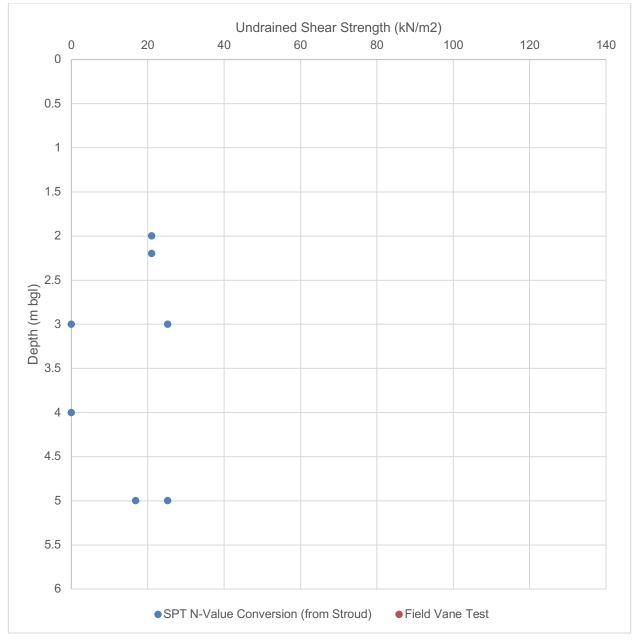
4.2 In-situ Testing

4.2.1 Standard Penetration Tests (SPTs)

In-situ SPTs were undertaken to assist with the interpretation of strata encountered. The results of corrected N60 values versus depth are plotted in the graph below:

Graph 1: Plot of Corrected SPT N-Values Versus Depth

Undrained shear strengths have been estimated from SPT N values using the relationship developed by Stroud (*The standard penetration test in incentive clays and soft rocks*) and summarised in Tomlinson where:


Mass shear strength = $f_1 \times N$

Where f_1 is based on the plasticity index.

A Plasticity Index of 32% has been assumed (based on geotechnical laboratory testing) which equates to an f_1 factor of 4.2.

Graph 2: Plot of Mass Shear Strength Versus Depth

4.2.3 Infiltration / Soakaway Test

The soakaway tests were undertaken with the two test pits (SA1 and SA2) within the proposed car park area on-site. Due to the rapid infiltration rate, it was not possible to sustain a suitable head of water within either of the test locations. Within the test pits at 1.5m depth, the maximum achievable head of water using a high-flow water pump discharging into the pits was 1.48m bgl.

4.2.4 Dynamic Plate Load Tests

The results of the four Dynamic Plate Load Tests within the proposed car park area produced equivalent CBR values of between 60% and >80% within the near surface made ground.

4.3 Soil Observations

Made Ground was recovered at all locations as a heterogeneous granular material, although consisted predominantly of limestone, mudstone and sandstone gravels.

There were no visible or olfactory indicators of contamination within the sampled soils.

4.4 Groundwater Observations

Groundwater was encountered at depths of between 4.6m and 4.5m bgl within boreholes BH401 and BH402, rising to 4.2m bgl after twenty minutes. A deeper and more rapid groundwater strike was encountered at 6m bgl within BH402 and BH403, rising to 2.0m and 2.2m bgl respectively after twenty minutes.

4.5 Chemical Analysis

4.5.1 Soils

Results of the soil chemical analysis are presented in Table 3 and summarised as follows.

The average FOC and pH were 0.03 and 8.8 respectively. Asbestos was not detected in the samples analysed. Detectable concentrations of metals were identified, although these are generally within the range that would typically be expected for made ground.

Concentrations of TPH were detected above method detection limit (MDL) in five of the seven samples analysed (from BH401 – 403, TP2 and SA2). A maximum total concentration of 3,400mg/kg was encountered in BH403 at 1.8 - 2.11m. The hydrocarbons were generally heavy end within the C16 to C35 carbon range. However, hydrocarbons in the C8 to C10 carbon range were also encountered in the sample from BH403 at 1.8 - 2.11m.

Concentrations of PAHs were generally low (<20 mg/kg). A maximum concentration (excluding bituminous surfacing sample) of 63 mg/kg was encountered in TP2 at 1.5 – 2.5m.

4.5.2 Groundwater

Results of the groundwater chemical analysis are summarised as follows:

The pH of all three groundwater samples was 8.3, whilst the Dissolved Organic Carbon concentrations ranged between 3.3 and 7.6mg/l. Dissolved concentrations of some metals were identified within the samples, including arsenic, boron and nickel.

The concentrations of Total Petroleum Hydrocarbons were recorded as being below method of detection limit (i.e. $<10\mu g/I$) within all three samples.

The total concentrations of PAH-16 were recorded as being below method of detection limit (i.e. $<2\mu g/l$) within all three samples.

4.6 Geotechnical Testing

Results of the geotechnical testing are summarised below.

Five plasticity tests undertaken on the recovered cohesive soils indicated the clay to be of low to high plasticity, with plasticity indices ranging 9% and 32%. The corresponding moisture contents ranged between 12% and 56%.

The PSD tests revealed the following:

- Natural strata in BH401 at 5.5 6.5m comprised greyish brown sandy, silty, clayey fine to coarse GRAVEL.
- Made Ground in BH401 at 0.0 0.1m comprised grey slightly silty/clayey sandy fine to coarse gravel.
- Made Ground in BH402 at 0.0 1.0m comprised greyish brown silty, clayey, sandy gravel.
- Alluvium in BH402 at 4.0 5.0m comprised greyish brown slightly gravelly sandy silty CLAY.
- Natural strata in BH403 at 5.0 6.0m comprised greyish brown sandy, silty, clayey fine to coarse GRAVEL.

Undrained shear strength tests revealed the following:

- Natural strata in BH401 at 4.0 4.45m recorded undrained shear strength values of 108, 125 and 147kPa for corresponding respective cell pressures of 80, 160 and 320kPa.
- Natural strata in BH403 at 4.0 4.45m recorded undrained shear strength values of 84, 115 and 174kPa for corresponding respective cell pressures of 80, 160 and 320kPa.
- The U100 sample from BH403 at 1.6 2.05m fell apart during extrusion at the laboratory.

The water-soluble sulphate contents varied from <0.01 to 0.18 g/l in the seven soil samples analysed with pH varying from 7.8 to 8.2. The total sulphur content varied from 0.12 to 2.10% and acid soluble sulphate varied from 0.045 to 0.16%.

4.7 Ground Gas Monitoring Results

The results of the ground gas and groundwater monitoring programme are summarised below:

- A maximum steady state concentration of methane was recorded as 0.1% v/v within all three monitoring wells over the course of the programme.
- A maximum steady state concentration of carbon dioxide was recorded as 0.2% v/v in BH402 on 10th May 2021. Detectable concentrations of carbon dioxide were recorded in all the monitoring wells;
- A minimum steady state concentration of oxygen was recorded 18.2 % v/v in BH402 on 10th May 2021;
- Ground gas flow rates were recorded at a maximum of 0.6 litres per hour (I/hr) in BH401 and BH402 over the course of the monitoring programme.
- Groundwater was encountered within all three standpipes throughout the monitoring programme, ranging between 1.35m and 2.57m bgl.
- Atmospheric pressure at the time of sampling varied between a high of 1020 millibar (mbar) on 19th May 2021 and a low of 1007 mbar on 10th May 2021.

5 GENERIC QUANTITATIVE RISK ASSESSMENT

5.1 Human Health Risk Assessment

In order to provide an up to date assessment of the risks to human health, Remada has adopted the most recent Generic Assessment Criteria (GAC) published by LQM/CIEH (S4ULs) and CL:AIRE/EIC/AGS for the assessment of potential risks to human health. The derivation of GAC, methodology, input parameters and technical guidance (CLEA) may be obtained upon request.

Default parameters have been adopted for sandy loam of pH 7 and commercial land use. FOC ranged from 0.003 to 0.075 giving a Soil Organic Matter (SOM) content range of between 0.43 to 12.93% with an average result of 5.4%. In order to present a conservative assessment, the SOM content of 2.5% has been adopted for the assessment.

The depth to potential sources of contamination for indoor air pathways has been assumed to be 0.5m below building foundation level. The source has been conservatively assumed to be at ground level for outdoor air and direct contact pathways.

For commercial land use the CLEA version 1.06 critical receptor is conservatively modelled as a female working adult with an exposure duration of 49 years. In accordance with the default parameters it was assumed that employees spend most of their time indoors and that 80% of outdoor area is covered by hardstanding. As such, the potential exposure pathways have been assumed to be:

- Direct Soil and Indoor Dust Ingestion;
- Skin contact with soils and dusts;
- Inhalation of indoor and outdoor dusts and vapours.

Where GAC values for individual TPH fractions are not exceeded, the potential additive effect has been assessed by calculating overall TPH hazard index for each sample.

5.2 Comparison of Soil Analysis Results with Human Health GAC

A comparison of soil chemical analysis with GAC is presented as **Table 3**.

TPH, PAH & BTEX

None of the analytes tested were detected at concentrations that exceeded the human health GAC protective of on-site workers.

Metals & Inorganics Excluding Asbestos

None of the analytes tested were detected at concentrations that exceeded the human health GAC protective of on-site workers.

<u>Asbestos</u>

There was no asbestos detected in the samples selected for analysis.

5.3 Controlled Waters Risk Assessment

5.3.1 Controlled Waters Sensitivity

The site is not located within a designated Groundwater Source Protection Zone. There are no groundwater abstraction licences within 1000m of the study site.

The available BGS records and the findings of this intrusive investigation have revealed that the site is underlain by superficial deposits, classified as a Secondary A Aquifer. The bedrock geology comprises South Wales Lower Coal Measures Formation, also classified as a Secondary A Aquifer and was encountered at depths of between 6.95m and 7.65m bgl within the cable percussive boreholes.

The nearest surface water feature (a drainage channel / stream) is located 71m to the north-west of the site. The River Clyne is located approximately 220m to the south of the site at its nearest point, whilst the tidal reaches of Swansea Bay are located from circa 160m to the east.

Given the general cohesive nature of the encountered shallow natural soils, it is anticipated that groundwater beneath the site will have limited resource value. However, groundwater strikes were encountered circa 4.5m within the natural clays in two of the boreholes (BH401 and BH402), indicating the presence of perched water within these cohesive deposits. A rapid ingress of water was recorded at 6m within boreholes BH402 and BH403, which corresponded with the penetration into granular (sandy GRAVEL) deposits. The 6m depth correlates with a groundwater ingress within a metre of sea level; the strike being recorded at 0.36 - 0.67m AOD respectively. Therefore, it was considered likely that the water ingress recorded at 6m in these locations is marine in origin.

During the subsequent monitoring visits, groundwater was identified within all three monitoring wells at depths of between 1.35m and 2.57m bgl. When corrected based on the topography, the levels within the wells ranged between 4.22m AOD and 5.44m AOD. The groundwater height within the wells is concurrent with the groundwater rise from 6.0m to 2.0m observed within BH402 and BH403 during the intrusive works.

The groundwater identified within the granular (deeper) deposits is considered to be representative of the Secondary A Aquifer underlying the site. Whilst this is considered to be of low sensitivity, the site is located adjacent to the River Clyne and Swansea Bay, and hydraulic connectivity is anticipated between the groundwater and these water features.

5.3.2 Comparison with EQS Levels

The concentrations of contaminants with groundwater sampled from have been compared with the Water Framework Directive Regulations 2015 Schedule 5 General Quality of Groundwater as an applicable Environmental Quality Standards (EQS) for Secondary Aquifers. The MAC-EQS level has been adopted.

A comparison of groundwater chemical analysis with MAC-EQS levels is presented as **Table 4** and is summarised in detail below:

There are no recorded exceedances of the adopted MAC-EQS levels for any of the determinands screened within the three groundwater samples.

5.4 Ground Gas Assessment

In order to understand the gassing regime at the site, a Characteristic Situation (as defined in CIRIA C665 and BS8576:2013) is determined for the site. CIRIA C665 and BS8576 provides definitions for each Characteristic Situation based on Gas Screening Values (GSV) which are calculated as follows:

• GSV = Gas Concentration (% v/v) x Measured Borehole Flow Rate (l/hr)

BS8576 makes a distinction between the GSV and the Hazardous Gas Flow Rate (Q_{hg}) which is also calculated using the above calculation. BS8576 states that Q_{hg} is calculated for each individual borehole for each monitoring visit, whereas the GSV is taken as the representative value for the site or site zone.

As a worst-case assessment, the GSV for the site is therefore taken as the maximum steady-state carbon dioxide/methane concentration recorded in the boreholes which is multiplied by the maximum flow rate recorded during the same monitoring event.

- Methane GSV = 0.1 % x 0.6 l/hr = 0.0006 l/hr
- Carbon Dioxide GSV = 0.2 % x 0.6 l/hr = 0.0012 l/hr

The calculated GSV of less than 0.07 l/hr for methane and carbon dioxide places the site into Characteristic Situation 1. BS8485 states that for Characteristic Situation 1 the methane concentration would typically be less than 1% and carbon dioxide less than 5% and that if concentrations are above these limits then consideration should be given to placing the site into Characteristic Situation 2. As the concentrations of methane and carbon dioxide were both within these typical limits it is considered that the Characteristic Situation 1 classification is appropriate for the site. Therefore, gas protection measures are not deemed necessary for the proposed development.

However, the site is located in an Intermediate probability radon area and Basic radon protective measures are necessary within the design of the proposed retail store.

5.5 Revised Conceptual Site Model

A revised Conceptual Site Model is presented as **Table 5** below.

5.6 Waste Classification

In general, the results of the chemical analyses indicate that the material would be classified as non-hazardous waste.

Elevated concentrations of Total Petroleum Hydrocarbon (TPH) above 1,000mg/kg have been identified. The TPH appears to be weathered diesel and therefore this material would also be classified as non-hazardous waste. While waste generated is likely to be classified as non-hazardous, there is the potential for higher concentrations of TPH to be encountered. If encountered during the redevelopment materials exhibiting evidence of hydrocarbon contamination should be segregated and analysed to determine precise waste classification.

5.7 Health & Safety Considerations

To ensure direct exposure of construction workers involved in the site redevelopment to any impacted contaminated shallow soils is minimised, the guidance stated in HSG 66 "Protection of Workers and the General Public During Redevelopment of Contaminated Land" should be followed.

Potential Source Areas	Potential Contaminant of Concern	Pathways	Potential Receptor		Exposure Route (Human unless otherwise stated)	lde Lir	tential ntified nkage itigated)	Findings of Ground investigation	Risk (Un- mitigated)	Proposed Remediation (Mitigation) Measures	Residual Risk Estimation
<u>On-site Sources</u> Halfway		Disturbance due to		•	Direct Soil Ingestion	•	Yes	All soils tested were <gac< th=""><th>Negligible</th><th>None</th><th>Negligible</th></gac<>	Negligible	None	Negligible
Garage/Shell Garage		construction plant causing direct		•	Indoor Dust ingestion	٠	Yes	As above	Negligible	None	Negligible
Residential properties	Asbestos /	contact, dusts, vapours.	Occupants of the	•	Skin Contact with Soils	•	Yes	As above	Negligible	None	Negligible
General Made	Metals As, Be, Cd, Cu, Cr (VI),	Direct Contact with	development / building	•	Skin Contact with Dust	•	Yes	As above	Negligible	None	Negligible
Ground associated with historic	Cr (III) Hg, Ni, Se, Va, Zn,	occupants of the proposed	fabric	•	Inhalation of Outdoor Dust	•	Yes	As above	Negligible	None	Negligible
redevelopment.	Boron, TPH /PAH.	development		•	Inhalation of Outdoor Vapours	•	Yes	As above	Negligible	None	Negligible
Off-site Sources		Inhalation of fibres / vapours / gases	Adjacent	•	Inhalation of Indoor Vapours	•	Yes	As above	Negligible	None	Negligible
Oystermouth Tramway/Swansea and Mumbles		by occupants of proposed development	residents during construction	•	Inhalation of ground gas	•	Yes	CS1	Negligible	None	Negligible
Railway		development	construction	•	Inhalation of radon gas	•	Yes	Intermediate Probability Radon Area	Potential risk	Basic radon protection measures	Negligible
London North Western Railway		Permeation of water supply		•	Ingestion via permeated water supply pipework	•	Yes	All soils tested were <gac< td=""><td>Negligible</td><td>None</td><td>Negligible</td></gac<>	Negligible	None	Negligible
Coal Yard Residential Housing		pipework		•	Direct contact with Secondary (A) Aquifer in Superficial Deposits	•	Yes	All waters tested were <eqs< td=""><td>Negligible</td><td>None</td><td>Negligible</td></eqs<>	Negligible	None	Negligible
Electricity Sub Station		Leachate	Secondary Aquifers	•	In-direct contact with Secondary (A) Aquifer in bedrock	•	Yes	As above	Negligible	None	Negligible

Table 5: Refined Conceptual Site Model

Direct contact with subsurface soil and/or groundwater during redevelopment works are not assessed as part of the CSM. It is considered that risks to workers will be managed as part of any the redevelopment works at the site through the application of health and safety procedures, where required.

6 GEOTECHNICAL SITE ASSESSMENT

6.1 Geotechnical Considerations

An indicative site layout is indicated in **Figure 3** with the Lidl store zone being located in the north-western part of the site with associated car parking located in the south-eastern part, fronting onto Mumbles Road. It is understood that that the proposed site redevelopment comprises a car parking area at ground level with the Lidl Store located, at first floor level, above.

Exploratory holes BH401, BH402 and BH403 were located within the general vicinity of the proposed store, and ground conditions were generally observed to comprise made ground to depths of 2.0 and 2.5m bgl resting upon Alluvium (soft clays with layers of peat) to depths of between 6.0 and 6.3mbgl overlying Glaciofluvial Deposits. Sandstone bedrock was encountered at depths of between 6.95 and 7.65mbgl.

It should be noted that deeper made ground, in excess of 4m, is likely to be encountered in some areas associated with the backfilling of the former tank excavations.

The trial pits and CBR tests were all undertaken in the proposed car park area located in the south-eastern part of the site.

Details of the proposed permanent and variable design loads (actions) are not currently known although an indicative column load of 400kN has been provided.

6.2 Foundations

Shallow spread foundations are not considered to be a suitable foundation solution due to the depth of made ground and the presence of highly compressible Alluvium beneath. It is therefore considered that a piled foundation solution or potentially ground improvement would be the most suitable option for the site.

Ground improvement techniques such as vibro-replacement stone or concrete columns could be considered for the site. Both ground improvement techniques involve inserting a vibrating poker into the ground, which displaces the soil. The resultant void is then infilled with either stone or concrete. However, the presence of soft Alluvium which included layers of peat may not provide the lateral support required for these techniques to work adequately. In addition, given that the proposed development comprises a car parking area at ground floor with the store located above this design is likely to be more suited to a piled foundation solution.

If a piled foundation solution is adopted then either driven or continuous flight auger (CFA) piles could be utilised. Driven piles have the advantage of improving the density of the ground whereas CFA piles could potentially loosen the granular deposits and thus result in a reduced safe working load. The main disadvantage of driven piles is that they can cause unacceptable. If driven piles are used then assurances will need to be sought from the piling contractor that damage will not be caused to nearby structures, including buried infrastructure on the site.

If a piled foundation solution is adopted then either driven or replacement piles (bored or continuous flight auger (CFA)) piles could be utilised. Driven piles have the advantage of improving the density of the ground, but can cause unacceptable amounts of vibration that could potentially damage nearby above and underground structures. It is normal practice to install piles into the bearing stratum by 5 times the pile diameter. This would mean that for a 300mm diameter pile that pile should extend approximately 1.5m into the bearing stratum. While the Glaciofluvial Deposits were in the order of 1.5m thick in BH401 and BH403, a more limited thickness of 1m was recorded in BH402. This means that it is likely that sockets will need to be installed into the bedrock and as such CFA piles may not be suitable. Specialist advice from a piling contractor should be sought to determine whether piles driven into the weathered zone will provide sufficient lateral support or whether a rock socket is required within the un-weathered bedrock.

Alternatively, consideration could be given to bored piles. To install bored piles a void is formed which is then filled with concrete. The sides of the shaft will need to be supported, normally by the use of casing. Support will be required through the made ground and the natural Alluvium and Glaciofluvial Deposits. The majority of the working load will be provided by the end resistance in a rock socket. The rock socket needs to be sufficiently deep to support the sides the pile. Care needs to be taken to remove debris from the base of the rock socket prior to forming the pile. Rapid excavation of the pile sockets in weak rock is recommended to minimise the potential for deterioration in the walls which could result in the swelling of the mudstone. After formation, the pile should be concreted immediately, preferably on the same day.

Remada has undertaken a preliminary assessment of potential safe working loads for pile design based upon the following idealised soil profile based on the information provided in BH401, BH402 and BH403 and the following assumptions:

Depth (m)	Ground Conditions	Assumptions
GL to 6.3m	Made Ground and Alluvium	Ignored in calculations
6.3 to 7.6m	Glaciofluvial Deposits	Average N value of 30.
>7.6m	Bedrock	Assumed to comprise very dense sand with N=50 $(\phi = 41^{\circ} \text{ Tomlinson})$

Table 6: Idealised Soil Profile

Groundwater has been assumed to be at >6mbgl.

The following table provides a summary of the estimated safe working loads base on the assumptions detailed above:

Pie Toe Depth (m)	Pile Type	Pile Diameter (mm)	Estimated Safe Working Load (kN)
9.0	CFA	300	365
9.0	CFA	450	805
9.0	CFA	600	1425
9.0	Driven	300	370
9.0	Driven	450	820
9.0	Driven	600	1450

Table 7: Estimated Safe Working Loads

The safe working load has been calculated by two different methods. In the first method, a factor of safety of 2.5 is applied to both the end bearing and skin friction components. In the second method, a factor of safety of 3.0 is applied to the end bearing component and 1.5 to the skin friction component. The safe working load is calculated by both methods and the lower of the two adopted.

The calculated safe working load has been calculated for a single isolated pile. The effect of group action has not been taken into consideration. In addition, negative skin friction in the made ground have not been taken into consideration.

The above table is for preliminary use only and additional ground investigation is required to prove soil characteristics and depths and the piles should be designed by a specialist contractor.

The pile carrying capacities may be determined by the strength of normal pile concrete. It may therefore be necessary to increase the strength of the concrete or reduce the safe working loads accordingly. Care

also needs to be taken if slender piles are used to ensure that there is sufficient lateral support to prevent shearing or buckling.

6.3 Floor Slab

The proposed development comprises a car park at ground level with the store located at first floor level. Therefore, it is anticipated that there will be limited floor constructed at ground level. Due to the presence of made ground across the site in excess of 600mm it is recommended that the floor slab is fully suspended.

It should also be noted that the site is located in an area that is classified as an intermediate probability radon area and as such basic radon protective measures should be included within the floor slab constructed at ground level.

6.4 Imported Fill

All imported fill material should comply with an earthworks specification to be prepared by the engineer and not contain concentrations of contaminants at greater than the Generic Assessment Criteria (GAC) presented in **Table 3**.

6.5 Excavations and Temporary Works

Side slopes within the Made Ground and the underlying natural deposits are unlikely to remain stable even in the short term without support or without being battered back to a safe slope gradient. A detailed inspection of the side slopes should be made during excavation and a risk assessment carried out to fully assess the support measures required.

Groundwater was found to be resting within the three monitoring wells at depths of between 4.22 and 5.44mbgl. It is recommended that groundwater levels are monitored again prior to construction.

6.6 External Car Park Construction

CBR values estimated from the dynamic plate load tests which indicated that the equivalent CBR value for each test was in excess of 60%. This indicates that the materials currently present at surface would form a suitable bearing layer for external surfacing. However, the material is likely to become disturbed during the construction process and therefore the formation should be proof-rolled and any soft/loose pockets encountered should be excavated and replaced with well compacted granular fill prior to pavement construction.

6.7 **Protection of Buried Concrete**

In accordance with BRE SD1 for buried concrete in a brownfield site with mobile groundwater, analyse of selected soil samples for water soluble sulphate returned values of up to <0.01 to 0.18 g/l and pH varied from 7.8 to 8.2. Therefore, a Design Sulphate Class DS-1 is considered appropriate for buried concrete and an ACEC Class of AC-1 is considered appropriate for the location.

6.8 Soakaway Tests

Six soakaway tests were conducted within the two test pits (SA1 and SA2) located adjacent to Mumbles Road. The results indicated a rapid infiltration into the made ground underlying the site during Remada's intrusive investigation. However, the site has historically been used as a fuel filling station. Whilst no petroleum hydrocarbons were detected within the groundwater samples, concentrations of upto 3400mg/kg were identified within the underlying soils circa 2m depth.

Furthermore, the natural strata underlying the made ground typically comprises Alluvium (soft clays with layers of peat) to depths of between 6.0 and 6.3mbgl. Groundwater was encountered at 4m and 6m depth

during the intrusive investigation but did not seem to be a laterally continuous horizon across the entirety of the site.

Consequently, soakaways are not considered suitable for the proposed development.

6.9 General Construction Advice

All formations should be cleaned, and subsequently inspected, by a suitably qualified engineer prior to placing concrete. Should any soft, compressible or otherwise unsuitable materials be encountered they should be removed and replaced by blinding concrete.

Where applicable ground beneath the proposed building footprint and potentially car parking may require to be stripped to reveal localised areas of made ground and structures. Excavations should be backfilled with suitably re-compacted materials to achieve formation level.

7 CONCLUSIONS & RECOMMENDATIONS

7.1 Conclusions

The following conclusions have been made based on the findings of this investigation.

7.1.1 Phase 2 Site Investigation

Exploratory holes BH401, BH402 and BH403 were located within the general vicinity of the proposed store. Obvious Made Ground was encountered within all exploratory holes and was present to depths of between 1.45m and 2.4m bgl, where proven. The Made Ground generally comprised sandy gravel composed of mixed lithologies including limestone, mudstone and quartzite. SPT N-values recorded in the Made Ground indicated that the relative density ranged from loose to dense.

According to the published geology superficial deposits beneath the majority of the site are indicated to comprise Aeolian Blown Sand Deposits. However, the material encountered underlying the made ground on-site typically comprised dark brown sandy gravelly CLAY and dark grey SILT, with localised sand lenses and layers of spongy brown fibrous PEAT. It is considered that these deposits are more consistent with Alluvium, this is indicated to be present along the western part of the site that could also be present beneath the Blown Sand Deposits.

Medium dense to dense clayey sandy GRAVEL with low cobble content was encountered underlying the cohesive deposits within the three cable percussive boreholes at depths of between 6.0m (BH403) and 6.5mbgl (BH402).

Light brown medium to coarse SANDSTONE was encountered within two of the cable percussive boreholes at depths of 6.95m (BH402) and 7.65m bgl (BH403). This bedrock is considered representative of the South Wales Lower Coal Measures Formation identified on the BGS mapping.

It should be noted that deeper made ground, in excess of 4m, is likely to be encountered in some areas associated with the backfilling of the former tank excavations.

7.1.2 Human Health Risk Assessment

The results of soil chemical analysis were compared to Human Health Generic Assessment Criteria for commercial land use. None of the analytes tested were detected at concentrations that exceeded the human health GAC protective of on-site workers.

7.1.3 Water Resources Risk Assessment

The groundwater identified within the granular (deeper) deposits is considered to be representative of the Secondary A Aquifer underlying the site. Whilst this is considered to be of low sensitivity, the site is located adjacent to the River Clyne and Swansea Bay, and hydraulic connectivity is anticipated between the groundwater and these water features.

The concentrations of contaminants with groundwater sampled from have been compared with the Water Framework Directive Regulations 2015 Schedule 5 General Quality of Groundwater as an applicable Environmental Quality Standards (EQS) for Secondary Aquifers. The MAC-EQS level has been adopted. There are no recorded exceedances of the adopted MAC-EQS levels for any of the determinands screened within the three groundwater samples.

In addition, it should be noted that the site will be predominantly covered with the building and areas of hardstanding. Therefore, the risk of leaching of contaminants as a result of infiltration of groundwater is likely to be limited. Therefore, the risk to groundwater from contaminants within the made ground at the site is considered to be low and does not warrant further consideration.

7.1.4 Waste Classification

In general, the results of the chemical analyses indicate that the material would be classified as non-hazardous waste.

Elevated concentrations of Total Petroleum Hydrocarbon (TPH) above 1,000mg/kg have been identified. The TPH appears to be weathered diesel and therefore this material would also be classified as non-hazardous waste. While waste generated is likely to be classified as non-hazardous, there is the potential for higher concentrations of TPH to be encountered. If encountered during the redevelopment materials exhibiting evidence of hydrocarbon contamination should be segregated and analysed to determine precise waste classification.

7.2 Recommendations

Shallow spread foundations are not considered to be a suitable foundation solution due to the depth of made ground and the presence of highly compressible Alluvium beneath. It is therefore considered that a piled foundation solution or potentially ground improvement would be the most suitable option for the site.

Ground improvement techniques such as vibro-replacement stone or concrete columns could be considered for the site. Both ground improvement techniques involve inserting a vibrating poker into the ground, which displaces the soil. The resultant void is then infilled with either stone or concrete. However, the presence of soft Alluvium which included layers of peat may not provide the lateral support required for these techniques to work adequately. In addition, given that the proposed development comprises a car parking area at ground floor with the store located above this design is likely to be more suited to a piled foundation solution.

The proposed development comprises a car park at ground level with the store located at first floor level. Therefore, it is anticipated that there will be limited floor constructed at ground level. Due to the presence of made ground across the site in excess of 600mm it is recommended that the floor slab is fully suspended.

It should also be noted that the site is located in an area that is classified as an intermediate probability radon area and as such basic radon protective measures should be included within the floor slab constructed at ground level.

A Design Sulphate Class DS-1 is considered appropriate for buried concrete and an ACEC Class of AC-1 is considered appropriate for the location.

Six soakaway tests were conducted within the two test pits (SA1 and SA2) located adjacent to Mumbles Road. The results indicated a rapid infiltration into the made ground underlying the site during Remada's intrusive investigation. However, the site has historically been used as a fuel filling station and hydrocarbons have been recorded within the underlying soils circa 2m depth. Furthermore, the natural strata underlying the made ground typically comprises Alluvium (soft clays with layers of peat) to depths of between 6.0 and 6.3mbgl. Consequently, soakaways are not considered suitable for the proposed development.

Groundwater was found to be resting within the three monitoring wells at depths of between 4.22 and 5.44mbgl. It is recommended that groundwater levels are monitored again prior to construction.

7.3 Ground Gas

The results of four rounds of gas monitoring visits placed the site into Characteristic Situation 1 and therefore ground gas protection measures will not be required within the proposed building. However, the site is located in an Intermediate Probability Radon Area and Basic radon protective measures are necessary within the design of the proposed retail store.

REFERENCES & GUIDANCE

AGS, Guidance on the Waste Classification for Soils – A Practitioners' Guide 2019.

Barnes, G. 2010, Soil Mechanics Principles and Practice. 3rd Edition.

BRE, Special Digest 1:2005 (3rd Edition), Concrete in Aggressive Ground. 2005.

BS 10175:2011+A1:2013, Investigation of potentially contaminated sites: Code of practice.

BS 1377:1999. Methods of test for soils for civil engineering purposes.

BS 5930:2015, Code of practice for site investigations.

BS 8485:2015, Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings.

BS 8576:2013, Guidance on investigations for ground gas – Permanent gases and Volatile Organic Compounds (VOCs).

BS EN ISO 22476-3:2005, Geotechnical investigation and testing: Field testing - Standard penetration test.

CIRIA, C504, Engineering in glacial tills, 1999.

CIRIA, C665, Assessing risks posed by hazardous ground gases to buildings, 2007.

CIRIA, C682, The VOCs Handbook: Investigating, assessing and managing risks from inhalation of VOCs at land affected by contamination, 2009.

CIRIA, C716, Remediating and mitigating risks from volatile organic compound (VOC) vapours from land affected by contamination, 2012.

CIRIA C733, Asbestos in Soil and Made Ground: A Guide to Understanding & Managing Risks.

CL:AIRE/EIC/AGS, The Soil Generic Assessment Criteria for Human Health Risk Assessment, 2009.

CL:AIRE, SP1010, Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination -Final Project Report. 2013.

CL:AIRE, The Definition of Waste: Development Industry Code of Practice Version 2

DEFRA, Circular 01/2006, Contaminated Land Environmental Protection Act 1990, Part 2A. 2006.

DEFRA, SP1010, Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination – Policy Companion Document. March 2014.

Environment Agency, Model Procedures for the Management of Land Contamination, CLR 11, 2004.

Environment Agency, Verification of Remediation of Land Contamination Science Report – NC/00/38/SR

Environment Agency, Waste Classification, Guidance on the classification and assessment of waste (1st Edition V1.1) Technical Guidance WM3.

Health & Safety Executive, HSG 66, Protection of Workers and the General Public During Redevelopment of Contaminated Land. 1991.

Highways Agency, IAN 73/06 Rev 1, Design of Pavement Foundations, 2009.

Land Contamination Risk Management www.gov.uk 08.10.2020.

LCM/CIEH, The LQM/CIEH S4ULs for Human Health Risk Assessment. Land Quality Press, S4UL3146, 2015.

NHBC Standards, 2019.

Tomlinson, M.J., 2001, Foundation Design and Construction, 7th Edition.

The Water Framework Directive (Standards and Classification) Directions (England and Wales) 2015

The Definition of Waste: Development Industry Code of Practice, CL:AIRE 2011.

Guidance on the classification and assessment of waste (1st Edition v1.1) Technical Guidance WM3 2018.

STUDY LIMITATIONS

IMPORTANT. This section should be read before reliance is placed on any of the information, opinions, advice, recommendations or conclusions contained in this report.

1. This report has been prepared by Remada, Ltd with all reasonable skill, care and diligence within the terms of the Appointment and with the resources and manpower agreed with (the 'Client'). Remada does not accept responsibility for any matters outside the agreed scope.

2. This report has been prepared for the sole benefit of the Client unless agreed otherwise in writing.

3. Unless stated otherwise, no consultations with authorities or funders or other interested third parties have been carried out. Remada is unable to give categorical assurance that the findings will be accepted by these third parties as such bodies may have published, more stringent objectives. Further work may be required by these parties.

4. All work carried out in preparing this report has used, and is based on, Remada' professional knowledge and understanding of current relevant legislation. Changes in legislation or regulatory guidance may cause the opinion or advice contained in this report to become inappropriate or incorrect. In giving opinions and advice pending changes in legislation, of which Remada is aware, have been considered. Following delivery of the report Remada has no obligation to advise the Client or any other party of such changes or their repercussions.

5. This report is only valid when used in its entirety. Any information or advice included in the report should not be relied upon until considered in the context of the whole report.

6. Whilst this report and the opinions made are to the best of Remada' belief, Remada cannot guarantee the accuracy or completeness of any information provided by third parties.

7. This report has been prepared based on the information reasonably available during the project programme. All information relevant to the scope may not have received.

8. This report refers, within the limitations stated, to the condition of the site at the time of the inspections. No warranty is given as to the possibility of changes in the condition of the site since the time of the investigation.

9. The content of this report represents the professional opinion of experienced environmental consultants. Remada does not provide specialist legal or other professional advice. The advice of other professionals may be required.

10. Where intrusive investigation techniques have been employed they have been designed to provide a reasonable level of assurance on the conditions. Given the discrete nature of sampling, no investigation technique is capable of identifying all conditions present in all areas. In some cases the investigation is further limited by site operations, underground obstructions and above ground structures. Unless otherwise stated, areas beyond the boundary of the site have not been investigated.

11. If below ground intrusive investigations have been conducted as part of the scope, service tracing for safe location of exploratory holes has been carried out. The location of underground services shown on any drawing in this report has been determined by visual observations and electromagnetic techniques. No guarantee can be given that all services have been identified. Additional services, structures or other below ground obstructions, not indicated on the drawing, may be present on site.

12. Unless otherwise stated the report provides no comment on the nature of building materials, operational integrity of the facility or on any regulatory compliance issues.

13. Unless otherwise stated, samples from the site (soil, groundwater, building fabric or other samples) have NOT been analysed or assessed for waste classification purposes.

TABLES

			GAS &	GROL	JNDWA	TER	ΙΟΝΙΤΟ	DRING I	DATA										Remada
SITE		Former Half	way Gara	ige, 52 N	lumbles Ro	ad, Swa	ansea SA	3 5AT											
PROJECT No.		730.03										Atmospheric	& Gro	und Cond	litions				
Visit No:		1 of 4					Atmosph	neric Pres	sure Var	iations Duri	ing Visit					Ground Su	urface Cond	itions	
Carried Out b	y:	Idris Shafqa	at		ļ				1008mb								Dry		
Date:	-	06.05.2021							10001110								Diy		
Instrument	GA 5000 G501261					A	tmospher	ic Pressu	re Trend	Over Previ	ous 48hrs					Weath	er Condition	IS	
Details	0	GA 5000 G50	01261			Atmospheric Pressure Trend Over Previous 48hrs Rising							Sunny, v	warm, blue sl	kies				
Well No.	Cover Height	Well Diameter	CH₄ (% v/v)	CH ₄ Steady	CO ₂	(% v/v)	O ₂ (%	% v/v)	Duration	Flow Rate	Relative Pressure	PID	(ppm)	Atmospheric	Water Level	Water Level	Depth of	Comments
	(m AOD)	(mm)	Peak	Steady	LEL (%)	Peak	Steady	Minimum	Steady	(secs)^	(l/hr)	(Pa)	Peak	Steady	Pressure (mb)	(m bgl)	(m AoD)	Pipe (m bgl)	
BH401	6.940	50	0.1	0.1	2.0	0.0	0.0	19.3	20.1	60	0.3	0.21	-	-	1008	2.150	4.790	7.500	
BH402	6.360	50	0.0	0.1	2.0	0.0	0.0	17.9	18.3	60	0.4	0.27	-	-	1008	1.750	4.610	7.000	
BH403	6.670	50	0.1	0.0	0.0	0.3	0.1	20.0	20.3	60	0.4	0.34	-	-	1008	2.190	4.480	7.500	

Notes: NR = Not Recorded ^ For measurement of gas concentrations

> = Above LEL WST = Water Sample Taken GL = Ground Level

		(GAS &	GROL	JNDWA	TER	ΙΟΝΙΤΟ	DRING I	DATA										Remada
SITE		Former Half	way Gara	ige, 52 N	lumbles Ro	oad, Swa	ansea SA	3 5AT											
PROJECT No.		730.03										Atmospheric	& Gro	und Cond	ditions				
Visit No:		2 of 4					Atmosph	neric Pres	sure Var	iations Dur	ing Visit					Ground St	urface Cond	itions	
Carried Out by	y:	Idris Shafqa	ıt						1007mb								Dry		
Date:		10.05.2021							1007110								Diy		
Instrument Details	GA 5000 G501261					A	tmospher	ic Pressu	Rising	Over Previ	ous 48hrs						er Condition warm, blue sl		
Well No.	Cover Height (m AOD)	Well Diameter (mm)	CH₄ (Peak	(% v/v) Steady	CH₄ Steady LEL (%)	CO ₂	(% v/v) Steady	O ₂ (%	% v/v) Steady	Duration (secs)^	Flow Rate (I/hr)	Relative Pressure (Pa)	PID Peak	(ppm) Steady	Atmospheric Pressure (mb)	Water Level (m bgl)	Water Level (m AoD)	Depth of Pipe (m bgl)	Comments
BH401	6.940	50	0.1	0.0	0.0	0.1	0.0	19.7	20.6	60	0.5	0.51	-	-	1007	2.570	4.370	7.500	
BH402	6.360	50	0.1	0.0	0.0	0.1	0.1	17.5	18.2	60	0.6	0.38	-	-	1007	1.950	4.410	7.000	
BH403	6.670	50	0.1	0.0	0.0	0.5	0.2	19.3	20.0	60	0.5	0.43	-	-	1007	2.430	4.240	7.500	

Notes: NR = Not Recorded ^ For measurement of gas concentrations

> = Above LEL

WST = Water Sample Taken

GL = Ground Level

		(GAS &	GROU	JNDWA	TER	IONIT	DRING I	DATA										Remada
SITE		Former Half	way Gara	ige, 52 N	lumbles Ro	oad, Swa	insea SA	3 5AT											
PROJECT No.		730.03										Atmospheric	& Gro	und Cond	ditions				
Visit No:		3 of 4					Atmosp	heric Pres	sure Var	iations Dur	ing Visit					Ground St	urface Cond	itions	
Carried Out by	y:	Idris Shafqa	ıt						1020mb								Dry		
Date:		19.05.2021															-		
Instrument Details	GA 5000 G501261					A	tmosphei	ric Pressu	re Trend Rising	Over Prev	ious 48hrs						<mark>er Conditior</mark> warm, blue s		
Well No.	Cover Height (m AOD)	Well Diameter (mm)	CH₄ ([% v/v)	CH₄ Steady LEL (%)	CO ₂	(% v/v)	O ₂ (%	₀ v/v)	Duration (secs)^	Flow Rate (I/hr)	Relative Pressure (Pa)	PID	(ppm)	Atmospheric Pressure (mb)	Water Level (m bgl)	Water Level (m AoD)	Depth of Pipe (m	Comments
	(III AOD)	()	Peak	Steady		Peak	Steady	Minimum	Steady	(3003)	(,,,,,)	(1 4)	Peak	Steady	Tressure (mb)	(in bgi)	(11705)	bgl)	
BH401	6.940	50	0.1	0.0	0.0	0.1	0.1	19.5	20.3	60	0.6	0.56	-	-	1020	2.520	4.420	7.500	
BH402	6.360	50	0.0	0.0	0.0	0.1	0.0	17.6	18.3	60	0.5	0.45	-	-	1020	1.970	4.390	7.000	
BH403	6.670	50	0.1	0.0	0.0	0.4	0.1	19.2	20.1	60	0.5	0.39	-	-	1020	2.450	4.220	7.500	

Notes: NR = Not Recorded

^ For measurement of gas concentrations

entrations >

> = Above LEL WST = Water Sample Taken

GL = Ground Level

		(GAS &	GROL	JNDWA	TER	IONITO	DRING I	DATA										Remada
SITE		Former Half	way Gara	ige, 52 M	lumbles Ro	oad, Swa	insea SA	3 5AT											
PROJECT No.		730.03										Atmospheric	: & Gro	und Conc	litions				
Visit No:		4 of 4					Atmosph	neric Pres	sure Var	iations Dur	ing Visit					Ground St	urface Cond	itions	
Carried Out b	y:	Idris Shafqa							1016mb								Wet		
Date:	•	25.05.2021																	
Instrument Details	c	1261			A	tmospher	ic Pressu	re Trend Rising	Over Prev	ious 48hrs						<mark>er Condition</mark> g, Grey Skie			
Well No.	Cover Height	Well Diameter	CH₄ (% v/v)	CH₄ Steady	CO ₂	(% v/v)	O ₂ (%	₀ v/v)	Duration	Flow Rate	Relative Pressure	PID	(ppm)	Atmospheric	Water Level	Water Level	Depth of	Comments
	(m AOD)	(mm)	Peak	Steady	LEL (%)	Peak	Steady	Minimum	Steady	(secs)^	(l/hr)	(Pa)	Peak	Steady	Pressure (mb)	(m bgl)	(m AoD)	Pipe (m	
BH401	6.940	50	0.1	0.0	0.0	0.1	0.0	19.1	20.3	60	0.5	0.27	-	-	1016	1.500	5.440	7.500	
BH402	6.360	50	0.1	0.0	0.0	0.1	0.0	17.1	18.5	60	0.6	0.28	-	-	1016	1.980	4.380	7.000	
BH403	6.670	50	0.1	0.1	2.0	0.6	0.1	19.3	20.5	60	0.5	0.35	-	-	1016	1.350	5.320	7.500	

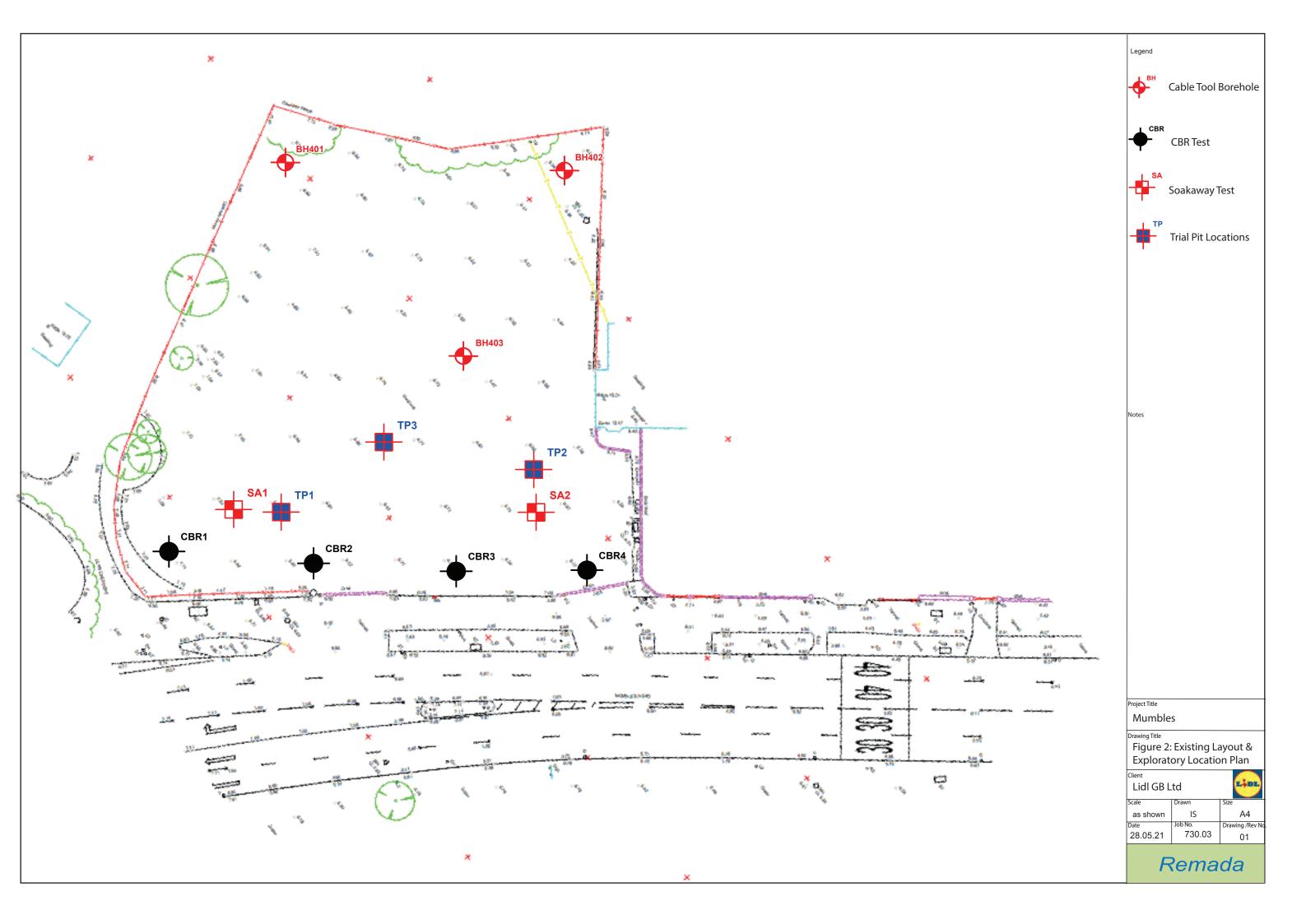
Notes: NR = Not Recorded ^ For measurement of gas concentrations > = Above LEL WST = Water Sample Taken

Table 4 Comparison of Groundwater Chemical Analyses with EQS

Client: Remada Ltd				21-18404	21-18404	21-18404
Quotation No.:	Water Framework			1211805	1211806	1211807
	Directive Regs 2015			BH401	BH402	BH403
	Table 1 Maxium Allowable			WATER	WATER	WATER
	Concentrations			25-May-2021	25-May-2021	25-May-2021
	Concentrations					
Determinand		Units	LOD			
pH			N/A	8.3	8.3	8.3
Arsenic (Dissolved)		µg/l	1.0	2.0	3.3	3.0
Boron (Dissolved)		µg/l	20	320	310	180
Beryllium (Dissolved)		µg/l	1.0	< 1.0	< 1.0	< 1.0
Cadmium (Dissolved)	0.45 - 1.5 depending on class	µg/l	0.080	< 0.11	< 0.11	< 0.11
Copper (Dissolved)		µg/l	1.0	0.51	< 0.50	< 0.50
Mercury (Dissolved)	0.07	µg/l	0.50	< 0.05	< 0.05	< 0.05
Nickel (Dissolved)	34	µg/l	1.0	< 0.50	0.64	< 0.50
Lead (Dissolved)	14	µg/l	1.0	< 0.50	< 0.50	< 0.50
Selenium (Dissolved)		µg/l	1.0	< 0.50	< 0.50	< 0.50
Vanadium (Dissolved)		µg/l	1.0	< 0.50	< 0.50	< 0.50
Zinc (Dissolved)		µg/l	1.0	< 2.5	< 2.5	< 2.5
Chromium (Trivalent)		µg/l	20	[B] < 20	[B] < 20	[B] < 20
Chromium (Hexavalent)		µg/l	20	[B] < 20	[B] < 20	[B] < 20
Dissolved Organic Carbon		mg/l	2.0	7.6	4.8	3.3
Aliphatic TPH >C5-C6		µg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C6-C8		µg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C8-C10		µg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C10-C12		µg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C12-C16		µg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C16-C21		µg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C21-C35		μg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C35-C44		μg/l	0.10	< 0.10	< 0.10	< 0.10
Total Aliphatic Hydrocarbons		µg/l	5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7		μg/l	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C7-C8		µg/l	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C8-C10		µg/l	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C10-C12		µg/i µg/i	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C12-C16		µg/i µg/i	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C16-C21		µg/i µg/i	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C21-C35		µg/i µg/i	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C35-C44		µg/i µg/i	0.10	< 0.10	< 0.10	< 0.10
Total Aromatic Hydrocarbons		µg/i µg/i	5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	-	µg/i µg/i	10	< 10	< 10	< 10
Naphthalene	130	µg/i µg/i	0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	130	µg/i µg/i	0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	-		0.10	< 0.10	< 0.10	< 0.10
	-	µg/l	0.10	< 0.10	< 0.10	< 0.10
Fluorene Phenanthrene		µg/l	0.10	< 0.10	< 0.10	< 0.10
Anthracene	0.1	µg/l	0.10	< 0.10	< 0.10	< 0.10
		µg/l				
Fluoranthene	0.12	µg/l	0.10	< 0.10	< 0.10	< 0.10
Pyrene		µg/l	0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene		µg/l	0.10	< 0.10	< 0.10	< 0.10
Chrysene	0.017	µg/l	0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	0.017	µg/l	0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	0.017	µg/l	0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene	0.27	µg/l	0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	N/A	µg/l	0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene		µg/l	0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	0.0082	µg/l	0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's		µg/l	2.0	< 2.0	< 2.0	< 2.0

Solubility of Benzene in water =. 1780 ug/l. TPH concentrations as Benzene are greater than the limit of solublity


Less that	n EQS
LOD>	EQS
>EC	QS



Phase 2 Ground Investigation Halfway Garage, Mumbles 730.03.02, August 2021

FIGURES

Phase 2 Ground Investigation Halfway Garage, Mumbles 730.03.02, August 2021

EXPLORATORY LOGS

Remada

Percussion Drilling Log

jec	t Name:	Halfway	Gara	ge		Client: L	idl Great E	Britain Lto	l		Date: 27/0	4/2021			
ati	on: Mun	nbles, Sw	vansea	a		Contrac	tor:				Co-ords: E	261998.00	N19095	59.00	
ec	t No. : 7	30.03			1	Crew Na	ame:				Drilling Eq	uipment: D	ando 25	00	
or	ehole N BH40				Type CP	6.	Level 94m AoD		Logged DW	Ву		cale :50		age Num Sheet 1 o	
11	Water Strikes	Sa Depth (-	and Ir Type	n <mark>Situ Testin</mark> Result	-	Depth (m)	Level (m)	Legend		Strat	um Descrip	otion		
		0.00 - 0 0.30 - 0 1.00 - 1 1.00 - 2 1.00	.10 .35 .10 .00	D ES ES B	N=37 (2,3/8,9		0.02	6.92		gravel quartz MADE mediu mediu and m MADE fine to limesto	GROUND: Li of mixed litho ite, calcite, mu GROUND: Li m to coarse. C m of mixed lith udstone. GROUND: D coarse gravel one, mudstone m to coarse.	logies includ udstone/shal ght grey sar Bravel is ang nologies inclu ense dark gu	ing limes e and sar dy gravel ular fine t uding lime rey sandy nologies in	tone, ndstone. I. Sand is to estone r angular ncluding	
Ż							1.80	5.14		Grevs	andy gravelly	CLAY Sand	is fine to	course	
		2.00 - 3 2.00		D SPT	N=5 (1,2/1,	1,2,1)	2.00	4.94	× × × × × × × × × × × × × × ×	gravel Made	is fine to med Ground". ark grey SILT.	ium of sands	stone. "Po	ossible	
		3.00 - 3	.20	ES			2.45	4.49	X X X X alte alte alte a alte alte a alte alte alte a alte alte alte		y brown fibrou	IS PEAT.			_
		3.00 - 4 3.00 3.30 3.45		B SPT D D	N=6 (2,1/1,2	2,1,2)	3.20	3.74	'a silia silia s 	Soft lig	ht grey CLAY				_
		3.90 - 4 4.00 - 4 4.00 - 5	.45	ES U D											
		5.00		SPT	N=6 (2,1/1,:	2,1,2)									
•		6.10 - 7	.50	в			6.10	0.84			m dense light				
	6.50		SPT	N=24 (4,4/7,	9,6,2)				coarse	s medium to c of mixed litho ne and sandst	ologies inclu				
, 		7.50 - 7 7.50		D SPT	N=50 (6,8/11,13,1	6,10)	7.50 7.85	-0.56 -0.91		conter litholog		arse rounde mudstone a	ed of mixe nd siltstor nded of m	ed ne.	_
	Hole Diame Base D	eter Diameter	Depth		Diameter Diameter	Depth To	p Depth Ba	Chiselling ase Dura	ition	Tool	Depth Top	Inclination Depth Base	and Orienta		nta

Remada

Percussion Drilling Log

- 41 - 1 - 1 - 1					4					
ation: Mun		ansea		Contrac					Co-ords: E262022.00	
ject No. : 7 Borehole N		н	lole Type	Crew N	ame: Level		Logged	By	Drilling Equipment: D Scale	ando 2500 Page Numb
BH40		•	CP	6.	36m AoD	_	DW	<i></i>	1:50	Sheet 1 of
ll Water Strikes	Sar Depth (d In Situ Tes	ting sults	Depth (m)	Level (m)	Legend		Stratum Descrip	tion
	0.00 - 0. 0.00 - 1.	.30 E	3	5/4,3,2,1)	0.02	6.34		gravel quartzi MADE mediun mediun	GROUND: Light grey ang of mixed lithologies includ te, calcite, mudstone/shal GROUND: Light grey san n to coarse. Gravel is ang n of mixed lithologies inclu udstone.	ing limestone, e and sandstone. dy gravel. Sand is ular fine to
	2.40 - 2.50 ES 2.50 D 2.70 D 2.70 - 2.80 ES)/0,0,0,1)	1.70 2.40	4.66 3.96	یالد عالد عالد د عالد عالد	angula includir is medi	GROUND: Very loose da r fine to coarse gravel of r ng limestone, mudstone a ium to coarse. y brown fibrous PEAT.	nixed lithologies
	2.70 - 2.	.80 E	S)/0,0,0,0)	2.70	3.66		Very so	oft light grey CLAY.	
×	4.00 - 5. 4.00	.00 E SF)/0,0,0,0)						
	6.10 6.50 6.70 7.00 7.00	C SF C SF	PT N=40 (7,10) PT 50 (22,)/6,15,11,8) 3/50 for mm)	6.00 6.50 6.95 7.00	0.36 -0.14 -0.59 -0.64		cobble is medi mudsto sub-an Cobble Very de Gravel mixed I	light grey clayey sandy G contents. Sand is medium ium to coarse of mixed lith one, siltstone and sandsto gular to sub-rounded of si <i>encountered between</i> ense grey gravelly medium is angular to sub-angular lithologies including muds rown medium to coarse S End of Borehole at 7	n to coarse. Gravel hologies including ne. Cobbles are iltstone. 6.4 and 6.5m bgl. n to coarse SAND. fine to medium of tone and siltstone. ANDSTONE.
Hole Diam th Base [eter Diameter	Ca: Depth Ba	sing Diameter Ise Diameter	Depth To	pp Depth B	Chiselling ase Dura	ation	Tool	Inclination Depth Top Depth Base	and Orientation Inclination Orien

Remada

Percussion Drilling Log

ject Name:		-		. .					a :			
ation: Mun		ansea		Contract						262025.00		
ject No. : 7 Borehole N		11-1-	e Type	Crew Na	ame: Level	Г	Logged	Dv/		uipment: Da cale		e Numbe
BH40			CP	6.6	67m AoD		DW	Бу		:50	-	e Numbe eet 1 of 1
l Water Strikes	San Depth (n Situ Testing Results	-	Depth (m)	Level (m)	Legend		Strat	um Descrip	tion	
	0.20 1.00 1.16 - 1. 1.30 1.60 - 2. 1.80 - 2. 2.00 - 2. 2.00 - 3. 2.20 2.55 3.70	D SPT 45 ES D 05 U 10 ES 40 ES 80 B SPT D D	N=14 (10,9/7, N=5 (1,2/1,1	3,2,2)	0.02 0.02 1.45 2.50 3.00 3.70	6.65 5.22 4.17 3.67 2.97	alle alle alle alle alle alle alle alle	gravel quartzi MADE to med limesto coarse Becomi Dark bi to coar litholog "Possit Spongy Plastic PEAT.	GROUND: Li of mixed litho te, calcite, mu GROUND: Li ium gravel of ne and muds	logies includi <u>dstone/shale</u> ght brown sa mixed litholo tone. Sand is <u>/ below 1.16</u> ravelly CLAY fine to mediu limestone an und". fibrous PEAT	ng limestor and sands ndy angula gies includi medium to 6m . Sand is m m of mixed d mudstone	edium
	4.00 - 4. 5.00 - 5. 5.00 5.60 6.20		N=4 (1,2/1,1	,1,1)	5.40 5.45 6.00	1.27 1.22 0.67	$\begin{array}{c} \sin z & - s b c & - s c$	Soft lig Dense content	rey medium to ht grey CLAY grey sandy G t. Sand is me d fine to coar	with rare she RAVEL with dium to coars	ell fragment moderate c se. Gravel is	obble
	6.50 7.50 7.80	SPT SPT D	N=47 (7,7/15,1 N=50 (17,8/11,14,1		7.65 7.95	-0.98 -1.28		includir Cobble siltston	ng mudstone, s are sub-rou e and sandst	siltstone and inded to roun one.	I sandstone ded of mud	lstone,
Hole Diame th Base C	eter Diameter	Casing Depth Base	Diameter Diameter	Depth To	p Depth Ba	Chiselling ase Dura	ation	Tool	Depth Top	Inclination a Depth Base	and Orientatio Inclination	n Orienta

Re	ema	da				Tr	ial F	Pit Lo	og						
Projec	ct Name	: Halfway	Garage		Client: Lidl Gre	at Britain	Ltd		Date: 27/04/202	21					
Locat	ion: Mur	nbles, Sw	ansea		Contractor:				Co-ords: E2620	029.00 N	190930	0.00			
	ct No. : 7				Crew Name:				Equipment: Tra	cked Ex					
Loo	cation N SA1	umber	Location Type TP				Level 7.00m Ac	D		ed By S	Scale 1:20			ge Numbo neet 1 of 1	
Well	Water Strikes			n Situ Testing	(Level	Legend		Stratum De	scriptior	า				
	Strikes	Depth (I	m) Type	e Results		(m)		MADE GR gravel.	OUND: Light grey			arse			
					0.30	7.00		MADE GROUND: Light grey slightly sandy angular fine to coarse gravel.				ular			
					0.80	6.70		MADE GR fine to coa	MADE GROUND: Light greyish brown sandy angular fine to coarse gravel. Sand is medium to coarse.				1		
					1.50	6.20			End of Borehol	e at 1.500	Jm				
Pit	Length	ensions Pit W	/idth	Pit Stability	Trencl Shoring Used	h Support	and Comme	ent Remarks		Date	Pumpir Rate	ng Data Rema AGS			

Re	ета	da				Tr	rial F	Pit L	og				
Projec	ct Name	: Halfway Ga	arage		Client: Lidl Gre	at Britain	Ltd		Date: 27/04/2021				
Locati	ion: Mur	nbles, Swan	sea		Contractor:		Co-ords: E262054.00 N190959.00						
	ct No. : 7				Crew Name:				Equipment: Tra	icked Exe			
Loo	cation N SA2			on Type FP	Level 6.75m Ac	ם מ		ed By S	Scale 1:20			age Numb Sheet 1 of	
\A/-11	Water			Situ Testing	Depth Level Legend								İ
Well	Strikes	Depth (m)	Туре	Results	((m)	Legend						
					0.30	6.75		gravel. MADE G	ROUND: Light grey				-
						0.45		fine to co	arse gravel.				
					1.00	6.45		MADE G fine to co	ROUND: Light greyi arse gravel. Sand is	sh brown ⊧ medium t	sandy to coar	angular se.	1 -
					1.60	5.75			End of Borehol	e at 1.600r	n		
													2
	Dim	ensions			Trend	h Support	and Comme	ent			Pum	ing Data	4 -
Pit	Length	Pit Width	<u> </u>	Pit Stability	Shoring Used			ent Remarks		Date	Pump Rate	ning Data Rema	irks
Rema	arks		I			1				<u> </u>		AGS	5

Re	ema	da						Tr	ial F	Pit Lo	g				
Projec	t Name:	: Halfway	Garag	е		Clie	nt: Lidl Grea	at Britain	Ltd		Date: 27/04/2021				
Locati	on: Mun	nbles, Sw	vansea			Contractor:				Co-ords: E262030.00 N190932.00					
Projec	xt No. : 7	'30.03				Crew Name:					Equipment: Tra	cked Ex	cavator		
Loo	ation Nu TP1	umber	Lo		on Type P		Level 6.91m Ao			jed By	Scale			ge Numb neet 1 of	
	Water	Sam	ple and		└ Situ Testing		Depth	Level	IS 1:20				1		
Well	Strikes	Depth (уре	Results		(m)	(m)	Legend		Stratum De				
							0.30	6.91 6.61 5.91		gravel. MADE GR0 fine to coar MADE GR0 fine to coar	E GROUND: Light grey angular fine to coarse E GROUND: Light grey slightly sandy angular o coarse gravel.				
					2.50	5.41	A state s	s alte alte a salte salte salte salte					2		
							3.00	4.41	silie silie silie		End of Borehole	e at 3 000)m		3 —
															4
		ensions	A(2)			<u> </u>	Trench	n Support	and Comme	ent				ng Data	
Pit	Length	Pit V	Vidth	F	Pit Stability	Sho	oring Used			Remarks		Date	Rate	Rema	arks
Rema	arks					<u> </u>						<u> </u>		AGS	5

Re	ema	da				Tr	ial F	Pit Lo	og				
Projec	t Name	: Halfway	Garage		Client: Lidl Grea	at Britain	Ltd		Date: 27/04/2021				
Locati	on: Mun	nbles, Sw	ansea		Contractor:				Co-ords: E262049.00 N190963.00				
Projec	t No. : 7	30.03			Crew Name:		Equipment: Tra	cked Ex	cavator				
Loc	ation No TP2	umber	Loca	tion Type TP	Level 6.64m Ao	D		led By S	Scale Page Number 1:20 Sheet 1 of 1				
Well	Water Strikes			n Situ Testing	<i>.</i>	Level (m)	Legend		Stratum De	scriptior	ı		
		Depth (m) Type	e Results	0.50	6.64		gravel.	DUND: Light grey a DUND: Light grey se gravel. Sand is	slightly s	andy ang	ular	
	1.00 6.14 MADE GROUND: Light greyish brown sandy angula fine to coarse gravel. Sand is medium to coarse.						ngular e.						
					1.50	5.64		Dark brown	brown silty gravelly CLAY.				2 -
					2.50	5.14		End of Borehole at 2.500m					3 -
Pit	Dim Length	ensions Pit V	Vidth	Pit Stability	Trench Shoring Used	1 Support	and Comme	ent Remarks		Date	Pumpir Rate	ng Data Rema	4
Rema	arks		I		1	I						AGS	S

Re	ema	da				Tr	rial F	Pit Lo	og				
Projec	t Name:	Halfway	Garage		Client: Lidl Grea	at Britain	Ltd		Date: 27/04/20	ate: 27/04/2021			
Locati	on: Mun	nbles, Sw	ansea		Contractor:				Co-ords: E262035.00 N190950.00				
Projec	:t No. : 7	30.03			Crew Name:				Equipment: Tra	cked Ex	cavator		
Loo	ation Nu TP3	umber		tion Type TP	Level Logged By 6.83m AoD IS				Scale Page Number 1:20 Sheet 1 of 1				
Well	Water Strikes	Sam Depth (n Situ Testing e Results	, · ,	Level (m)	Legend						
					0.40	6.83		gravel. MADE GR(fine to coar	GROUND: Light grey slightly sandy angular coarse gravel. Sand is medium to coarse. GROUND: Light greyish brown sandy angular coarse gravel. Sand is medium to coarse.				
					1.50	5.83		Dark brown	vn sandy gravelly CLAY.				2
					2.50	5.33			End of Borehole at 2.500m				3
		ensions			Trench	n Support	and Comme	ent			Pumping	g Data	l
Pit	Length	Pit W	/idth	Pit Stability	Shoring Used			Remarks		Date	Rate	Rema AGS	rks

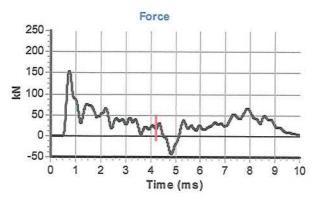
APPENDIX A SPT Hammer Energy Test Certificate

SPT Hammer Energy Test Report

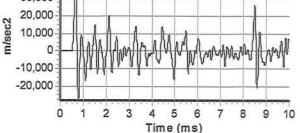
in accordance with BSEN ISO 22476-3:2005

ARCHWAY ENGINEERING AINLEYS INDUSTRIAL ESTATE ELLAND WEST YORKSHIRE HX5 9JP

Instrumented Rod Data

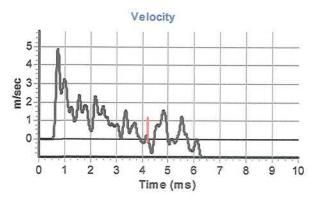

Diameter dr (mm):	54
Wall Thickness t _r (mm):	6.3
Assumed Modulus Ea (GPa):	208
Accelerometer No.1:	7080
Accelerometer No.2:	11609

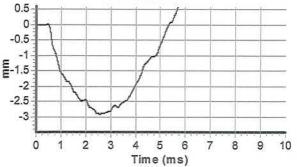
SPT Hammer Ref:	AR2462
Test Date:	16/09/2020
Report Date:	16/09/2020
File Name:	AR2462.spt
Test Operator:	JL

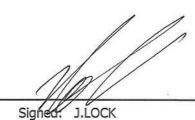

SPT Hammer Information

Hammer Mass	m (kg):	63.5
Falling Height	h (mm):	760
SPT String Leng	gth L (m):	10.0

Comments / Location GEOTRON




Calculations


Energy Ratio E _r (%	⁄o):	67
Measured Energy E _{meas}	(J):	317
Theoretical Energy E _{theor}	(J):	473
Area of Rod A (mm2):		944

The recommended calibration interval is 12 months

Displacement

Title: FITTER

Phase 2 Ground Investigation Halfway Garage, Mumbles 730.03.02, August 2021

APPENDIX B Soakage Test Results

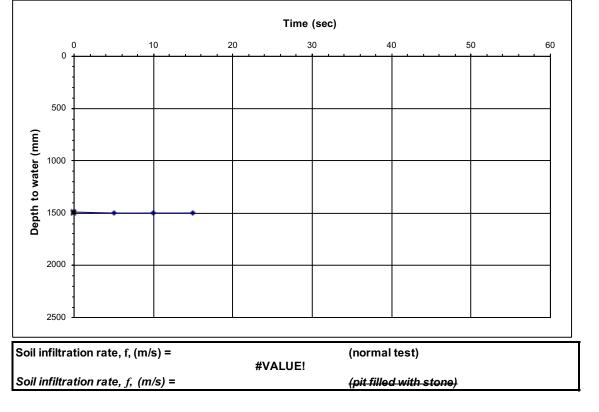
Remada

Client:	Lidl GB Limited
Job Name:	Mumbles, Swansea
Job No.:	730.03
Trial Pit No.	SA1
Test No.	1

Coordinates:

Time	Elapsed	Depth to v	vater from
	Time	ground	
	(sec)	(m)	(mm)
10.15.05	0	1.490	1490
10.15.10	5	1.500	1500
10.15.15	10	1.500	1500
10.15.20	15	1.500	1500
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0

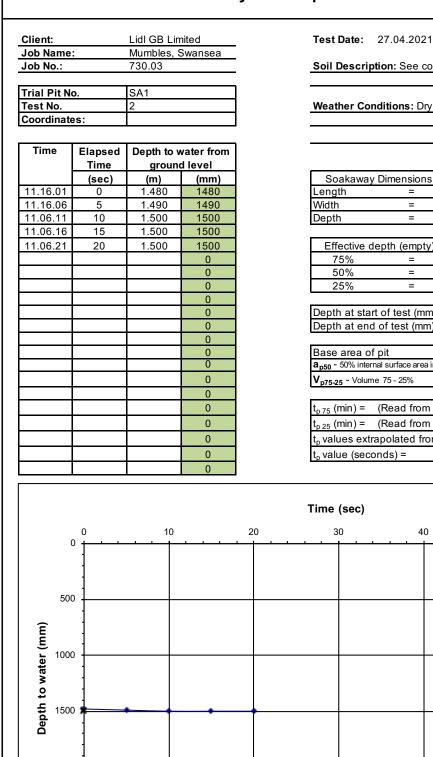
Test Date: 27.04.2021


Soil Description: See corresponding trial pit log for SA1

Weather Conditions: Dry & sunny

				_
Soakaway	Dimensions	(m)	(mm)	
Length	=	1.50	1500	
Width	=	0.65	650	
Depth	=	1.50	1500	
Effective de	epth (empty)	m	mm	
75%	=	1.50	1497.5	
50%	=	1.50	1495.0	
25%	=	1.49	1492.5	
Depth at start	of test (mm)	=	1490	
Depth at end	of test (mm)	=	1500	
	<u> </u>		•	
Base area of	nit		=	(

Base area of pit =	0.975
ap50 - 50% internal surface area inc. base =	0.997
V _{p75-25} - Volume 75 - 25% =	0.005


t _{p 75} (min) = (Read from graph)	N/A
t _{p 25} (min) = (Read from graph)	N/A
t _p values extrapolated from graph data =	#VALUE!
t _p value (seconds) =	#VALUE!

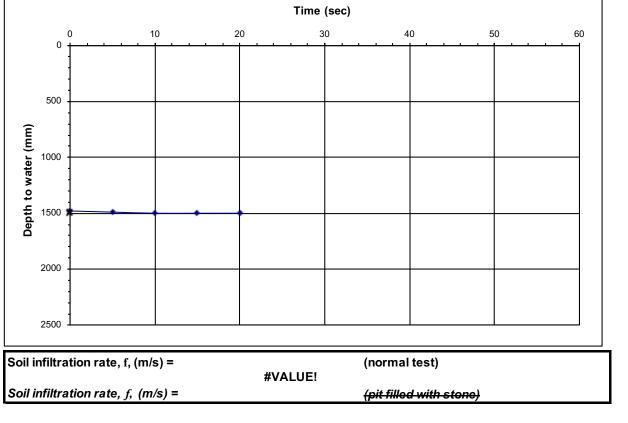
l

Notes: Unable to maintain head of water in test pit due to infiltration rate, despite using rapid flow from water tank

Remada

Soil Description: See corresponding trial pit log for SA1

Weather Conditions: Dry & sunny


Soakaway	Dimensions	(m)	(mm)
Length	=	1.50	1500
Width	=	0.65	650
Depth	=	1.50	1500

Effective depth (empty)		m	mm
75%	=	1.50	1495.0
50%	=	1.49	1490.0
25%	=	1.49	1485.0

Depth at start of test (mm) =	1480
Depth at end of test (mm) =	1500

Base area of pit =	0.975
a _{p50} - 50% internal surface area inc. base =	1.018
V _{p75-25} - Volume 75 - 25% =	0.010

t_{p75} (min) = (Read from graph)	N/A
t _{p 25} (min) = (Read from graph)	N/A
t _p values extrapolated from graph data =	#VALUE!
t _p value (seconds) =	#VALUE!

Notes: Unable to maintain head of water in test pit due to infiltration rate, despite using rapid flow from water tan

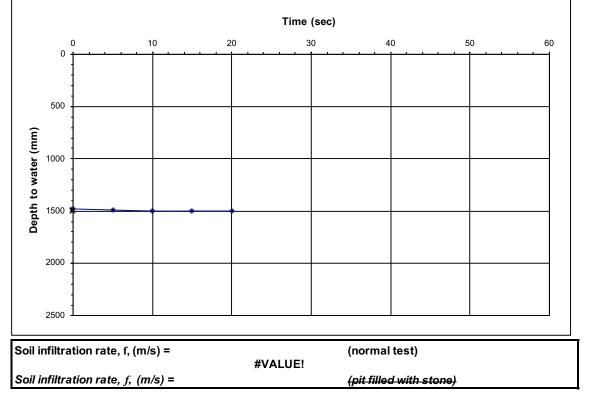
Remada

Client:	Lidl GB Limited	
Job Name:	Mumbles, Swansea	
Job No.:	730.03	
Trial Pit No.	SA1	
Test No.	3	

Trial Pit No.	SAT
Test No.	3
Coordinates:	

Time	Elapsed	Depth to water from	
	Time	ground	d level
	(sec)	(m)	(mm)
12.26.31	0	1.480	1480
13.26.36	5	1.490	1490
13.26.41	10	1.500	1500
13.26.46	15	1.500	1500
13.26.51	20	1.500	1500
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0

Test Date: 27.04.2021


Soil Description: See corresponding trial pit log for SA1

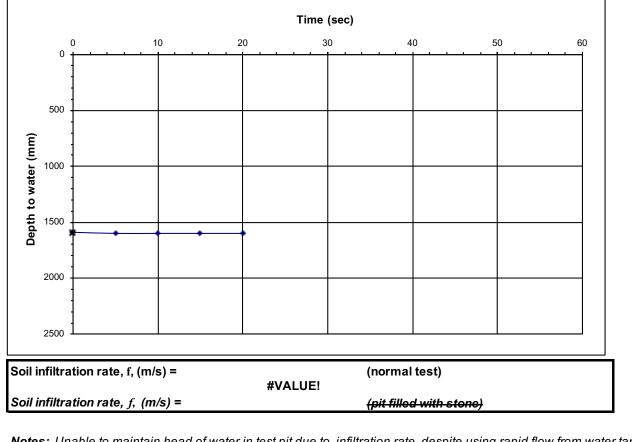
Weather Conditions: Dry & sunny

Soakaway	Dimensions	(m)	(mm)
Length	=	1.50	1500
Width	=	0.65	650
Depth	=	1.50	1500
Effective de	epth (empty)	m	mm
75%	=	1.50	1495.0
50%	=	1.49	1490.0
25%	=	1.49	1485.0
Depth at start of test (mm)		=	1480
Depth at end of test (mm)		=	1500

Base area of pit =	0.975
a _{p50} - 50% internal surface area inc. base =	1.018
V _{p75-25} - Volume 75 - 25% =	0.010

t _{p 75} (min) = (Read from graph)	N/A
t _{p 25} (min) = (Read from graph)	N/A
t _p values extrapolated from graph data =	#VALUE!
t _p value (seconds) =	#VALUE!

Notes: Unable to maintain head of water in test pit due to infiltration rate, despite using rapid flow from water tank


Remada

Client:		Lidl GB Lin	nited	Test Date: 27.04.2021
ob Name		Mumbles, S		
b No.:	-	730.03		Soil Description: See co
				_
al Pit N	0.	SA2		
est No.		1		Weather Conditions: Dry
Coordinate	es:			
Time	Elapsed	Depth to v	vater from	
	Time	-	d level	
	(sec)	(m)	(mm)	Soakaway Dimensions
0.40.04	0	1.590	1590	Length =
0.40.09	5	1.600	1600	Width =
0.40.14	10	1.600	1600	Depth =
.40.19	15	1.600	1600	
0.40.24	20	1.600	1600	Effective depth (empty
			0	75% =
			0	50% =
			0	25% =
			0	
			0	Depth at start of test (mn
			0	Depth at end of test (mm
			0	Pasa area of pit
			0	Base area of pit a_{p50} - 50% internal surface area
			0	V _{p75-25} - Volume 75 - 25%
			0	• p/5-25 Volume 70 - 20/0
			0	t _{p 75} (min) = (Read from
			0	$t_{p 25}$ (min) = (Read from
			0	$t_{p,25}$ (min) = (Read norm

0 0

itions:Dry&s	sunny		
Vinne melle me	(100)	(100.000)	1
		· · · /	
=	1.60	1600	
oth (empty)	m	mm	
=	1.60	1597.5	
=	1.60	1595.0	
=	1.59	1592.5	
Depth at start of test (mm) =			
of test (mm)	=	1600	
it		-	1.008
Base area of pit a _{p50} - 50% internal surface area inc. base		=	1.000
	Dimensions = = = poth (empty) = = = = of test (mm) of test (mm)	= 1.55 = 0.65 = 1.60 oth (empty) m = 1.60 = 1.60 = 1.59 of test (mm) = of test (mm) = it 1	Dimensions (m) (mm) = 1.55 1550 = 0.65 650 = 1.60 1600 obth (empty) m mm = 1.60 1597.5 = 1.60 1595.0 = 1.59 1592.5 of test (mm) = 1590 of test (mm) = 1600

t _{p 75} (min) = (Read from graph)	N/A
t _{p 25} (min) = (Read from graph)	N/A
t_p values extrapolated from graph data =	#VALUE!
t _p value (seconds) =	#VALUE!

Notes: Unable to maintain head of water in test pit due to infiltration rate, despite using rapid flow from water tank

Remada

(m) 1.55

0.65

1.60

m

1.60

1.59

1.59

=

=

=

=

Π

=

=

=

(mm) 1550

650

1600

mm

1595.0

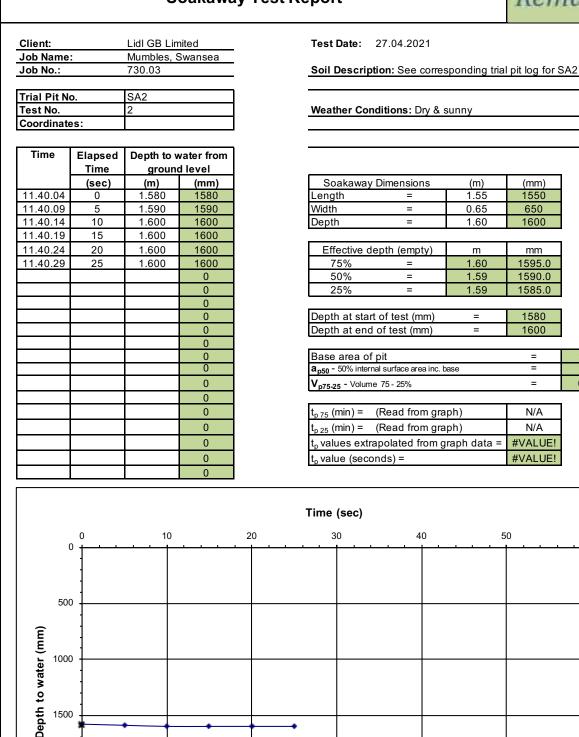
1590.0

1585.0

1580

1600

=

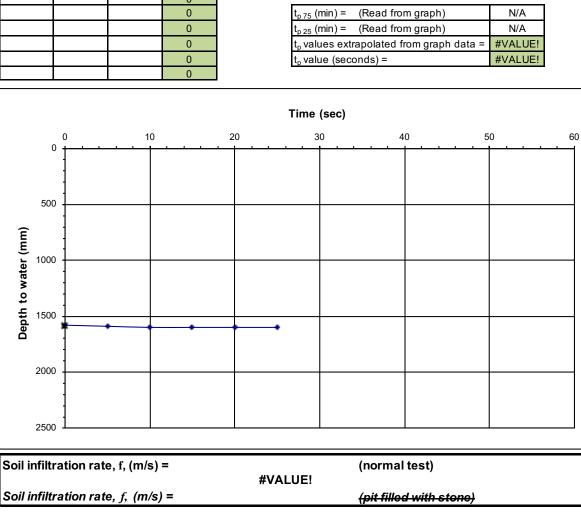

=

=

1.008

1.052

0.010

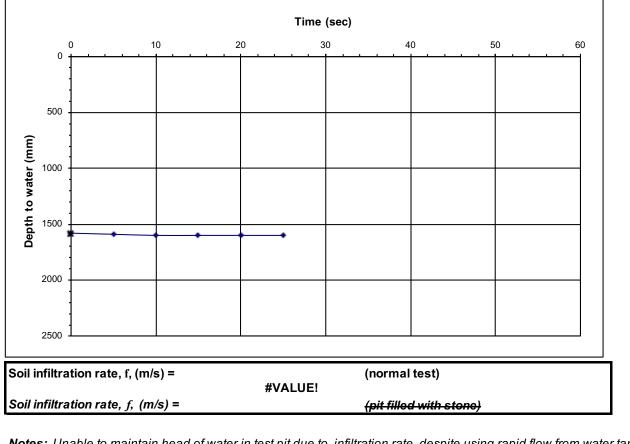


1000

1500

2000

2500



Notes: Unable to maintain head of water in test pit due to infiltration rate, despite using rapid flow from water tan

Remada

Client:		Lidl GB Lin			Test Date:	27.04.20
<u>Job Name</u> Job No.:	•	Mumbles, 9 730.03	Swallsea		Soil Descri	ption: See
		-				
Trial Pit N	0.	SA2				
Test No.		3			Weather Co	onditions:
Coordinate	es:					
Time	Elapsed	Depth to y	vater from			
-	Time		d level			
	(sec)	(m)	(mm)		Soakawa	y Dimensio
12.54.10	0	1.580	1580		Length	=
12.54.15	5	1.590	1590		Width	=
12.54.20	10	1.600	1600		Depth	=
12.54.25	15	1.600	1600			
12.54.30	20	1.600	1600		Effective	depth (em
12.54.35	25	1.600	1600		75%	=
			0		50%	=
			0		25%	=
			0			
			0		Depth at sta	
			0		Depth at en	id of test (r
			0		Deserves	£
			0		Base area o a _{p50} - 50% inte	DI DIL arnal surface a
			0		V _{p75-25} - Volu	
			0		▼ p75-25 - V010	ine 75-25/6
			0		t _{p 75} (min) =	(Read fr
			0		$t_{p 25}$ (min) =	
			0		t _p values ex	
			0		t _p value (see	conas) =
			0			
					Time (sec)	
	0	10		20	30	
(° † – – –					
	1					
	1					
500	o]					
	-					
Ê	-					
water (mm)	1					
ר ג 1000	₀ 					
ate	4					
3 S	1	I			1	

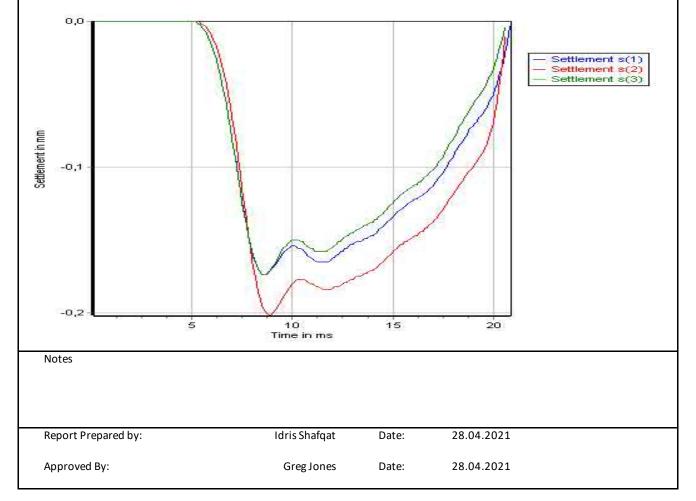
ion: See corresponding trial pit log for SA2 ditions: Dry & sunny (m) 1.55 (mm) 1550 Dimensions = = 0.65 650 Ξ 1.60 1600 pth (empty) m mm 1.60 1595.0 = = 1.59 1590.0 = 1.59 1585.0 of test (mm) = 1580 1600 of test (mm) = 1.008 1.052 pit = al surface area inc. base = = 0.010 75 - 25% (Read from graph) N/A N/A (Read from graph) #VALUE! polated from graph data = #VALUE!

Notes: Unable to maintain head of water in test pit due to infiltration rate, despite using rapid flow from water tank

APPENDIX C Dynamic Plate Load Test Results

Dynamic Plate Load Test Report

Test carried out according to BS-STB Part B 8.3


Client :	Lidl Great Britain Ltd		
Job Name:	Halfway Garage		
Job Number:	730.03		
Site:	Mumbles Road, Swansea, SA3 5AT		

Test Location:	1		
Test Layer:	Surface		
Test Strata:	Crushed Concrete		
Ground Condition	Dry		
Weather:	Sunny, warm, blue skies		

Report Date:	28/04/2021
Device:	HMP LEG4

Results	
S/V (m)	1.97
EvD (MN/m2)=	122.95
Equivalent CBR %	>80

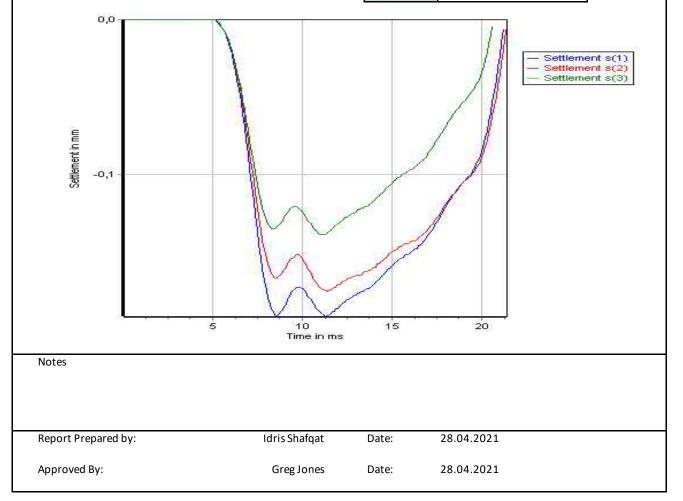
Settlement Readings (mm)		
S(1)	0.174	
S(2)	0.202	
S(2) S(3) S(m)	0.174	
S(m)	0.183	

Remada

Dynamic Plate Load Test Report

Test carried out according to BS-STB Part B 8.3

Client :	Lidl Great Britain Ltd
Job Name:	Halfway Garage
Job Number:	730.03
Site:	Mumbles Road, Swansea, SA3 5AT


Test Location:	2
Test Layer:	Surface
Test Strata:	Crushed Concrete
Ground Condition	Dry
Weather:	Sunny, warm, blue skies

 Report Date:
 28/04/2021

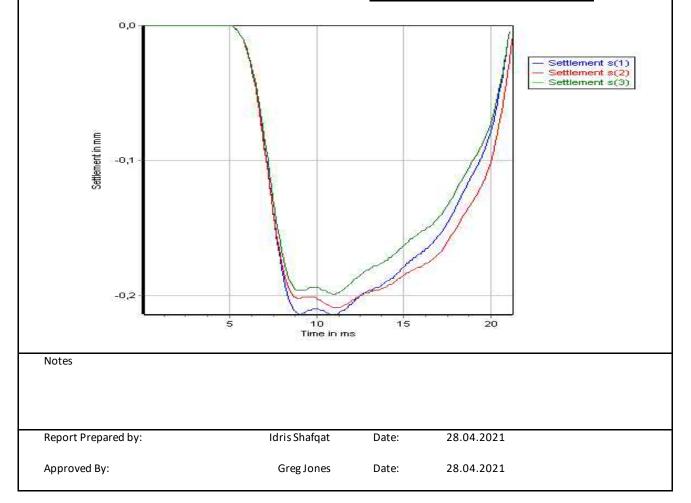
 Device:
 HMP LFG4

Results	
S/V (m)	1.98
EvD (MN/m2)=	133.14
Equivalent CBR %	>80

Settlement Readings (mm)	
S(1)	0.192
S(2)	0.176
S(3)	0.139
S(m)	0.169

Remada

Dynamic Plate Load Test Report


Test carried out according to BS-STB Part B 8.3

Client :	Lidl Great Britain Ltd
Job Name:	Halfway Garage
Job Number:	730.03
Site:	Mumbles Road, Swansea, SA3 5AT

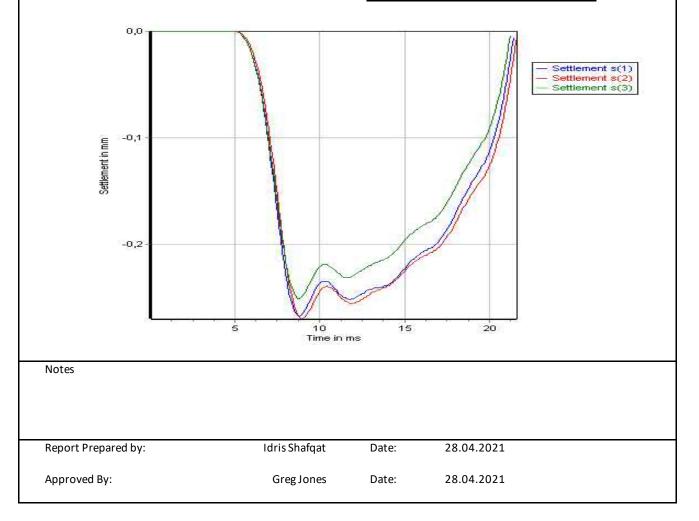
Test Location:	3
Test Layer:	Surface
Test Strata:	Crushed Concrete
Ground Condition	Dry
Weather:	Sunny, warm, blue skies

Report Date:	28/04/2021	
Device:	HMP LFG4	
Results		
S/V (m)		2.16
EvD (MN/m2)=		108.17
Equivalent CBR %		>80

Settlement Readings (mm)	
S(1)	0.214
S(2)	0.210
S(3)	0.199
S(m)	0.208

Remada

Dynamic Plate Load Test Report


Test carried out according to BS-STB Part B 8.3

Client :	Lidl Great Britain Ltd	
Job Name:	Halfway Garage	
Job Number:	730.03	
Site:	Mumbles Road, Swansea, SA3 5AT	

Test Location:	4
Test Layer:	Surface
Test Strata:	Crushed Concrete
Ground Condition	Dry
Weather:	Sunny, warm, blue skies

Report Date:	28/04/2021	
Device:	HMP LFG4	
Results		
S/V (m)		2.05
EvD (MN/m2)=		85.55
Equivalent CBR %		60

Settlement Readings (mm)	
S(1)	0.268
S(2)	0.270
S(3)	0.251
S(m)	0.263

Remada

Phase 2 Ground Investigation Halfway Garage, Mumbles 730.03.02, August 2021

APPENDIX D Low Flow Testing Certificates

Low-Flow Test Report:

Test Date / Time: 5/25/2021 4:33:48 PM Project: 730.02 Operator Name: Idris

Location Name: BH401	Flow Cell Volume: 130 ml	Instrument Used: Aqua TROLL 500	
Well Diameter: 5 cm	Final Draw Down: 0 m	Serial Number: 714274	
Screen Length: 3.5 m			
Top of Screen: 4 m			
Total Depth: 7.5 m			
Initial Depth to Water: 1.5 m			

Test Notes:

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10	+/- 10	+/- 5
5/25/2021 4:33 PM	00:00		12.35 °C	819.95 µS/cm	8.63 mg/L	2,246.9 NTU		150.00 cm
5/25/2021 4:34 PM	00:59		12.31 °C	1.22 µS/cm	6.90 mg/L	16.05 NTU		150.00 cm
5/25/2021 4:36 PM	02:48		12.65 °C	0.92 µS/cm	10.63 mg/L	17.61 NTU		150.00 cm
5/25/2021 4:37 PM	03:48		12.31 °C	740.12 µS/cm	0.68 mg/L	2,863.9 NTU		150.00 cm
5/25/2021 4:38 PM	04:48		12.36 °C	773.72 µS/cm	0.29 mg/L	3,390.0 NTU		150.00 cm
5/25/2021 4:39 PM	05:48		12.35 °C	822.39 µS/cm	0.21 mg/L	2,900.9 NTU		150.00 cm
5/25/2021 4:40 PM	06:48		12.40 °C	886.47 µS/cm	0.33 mg/L	3,417.6 NTU		150.00 cm
5/25/2021 4:41 PM	07:48		12.37 °C	940.64 µS/cm	0.27 mg/L	3,442.1 NTU		150.00 cm
5/25/2021 4:42 PM	08:48		12.42 °C	1,003.7 µS/cm	0.38 mg/L	3,956.5 NTU		150.00 cm
5/25/2021 4:43 PM	09:48		12.44 °C	1,040.7 µS/cm	0.48 mg/L	3,695.6 NTU		150.00 cm
5/25/2021 4:44 PM	10:48		12.45 °C	1,071.3 µS/cm	0.75 mg/L	3,378.4 NTU		150.00 cm
5/25/2021 4:45 PM	11:48		12.46 °C	1,096.0 µS/cm	0.96 mg/L	2,805.7 NTU		150.00 cm
5/25/2021 4:46 PM	12:48		12.46 °C	1,111.7 µS/cm	0.63 mg/L	2,266.6 NTU		150.00 cm
5/25/2021 4:47 PM	13:48		12.46 °C	1,132.9 µS/cm	0.55 mg/L	2,152.7 NTU		150.00 cm
5/25/2021 4:48 PM	14:48		12.46 °C	1,140.0 µS/cm	0.56 mg/L	1,899.3 NTU		150.00 cm
5/25/2021 4:49 PM	15:48		12.47 °C	1,156.6 µS/cm	0.58 mg/L	1,824.1 NTU		150.00 cm
5/25/2021 4:50 PM	16:48		12.48 °C	1,167.3 µS/cm	0.62 mg/L	1,384.7 NTU		150.00 cm

Samples

Sample ID:

Description:

Created using VuSitu from In-Situ, Inc.

Low-Flow Test Report:

Test Date / Time: 5/25/2021 5:05:12 PM Project: Low-Flow Test 2 Operator Name: Idris

Location Name: BH402	Flow Cell Volume: 130 ml	Instrument Used: Aqua TROLL 500	
Well Diameter: 5 cm	Final Draw Down: 0 m	Serial Number: 714274	
Screen Length: 4 m			
Top of Screen: 3 m			
Total Depth: 7 m			
Initial Depth to Water: 1.35 m			

Test Notes:

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10	+/- 10	+/- 5
5/25/2021 5:05 PM	00:00		12.33 °C	3.56 µS/cm	5.99 mg/L	17.51 NTU		135.00 cm
5/25/2021 5:08 PM	02:49		12.30 °C	3.11 µS/cm	8.40 mg/L	16.14 NTU		135.00 cm
5/25/2021 5:09 PM	04:25		12.33 °C	2,727.6 µS/cm	8.17 mg/L	192.10 NTU		135.00 cm
5/25/2021 5:13 PM	08:37		12.32 °C	2,762.2 µS/cm	6.92 mg/L	74.72 NTU		135.00 cm
5/25/2021 5:14 PM	09:37	7.37 pH	12.21 °C	2,748.2 µS/cm	0.16 mg/L	59.71 NTU	-180.0 mV	135.00 cm
5/25/2021 5:15 PM	10:37	7.38 pH	12.22 °C	2,739.5 µS/cm	0.00 mg/L	45.40 NTU	-188.3 mV	135.00 cm
5/25/2021 5:16 PM	11:37	7.38 pH	12.22 °C	2,724.1 µS/cm	0.00 mg/L	38.59 NTU	-192.7 mV	135.00 cm
5/25/2021 5:17 PM	12:37	7.39 pH	12.23 °C	2,719.3 µS/cm	0.00 mg/L	32.40 NTU	-195.9 mV	135.00 cm
5/25/2021 5:18 PM	13:37	7.39 pH	12.23 °C	2,710.8 µS/cm	0.00 mg/L	26.23 NTU	-198.4 mV	135.00 cm
5/25/2021 5:19 PM	14:37	7.40 pH	12.23 °C	2,700.6 µS/cm	0.00 mg/L	22.39 NTU	-200.4 mV	135.00 cm
5/25/2021 5:20 PM	15:37	7.40 pH	12.24 °C	2,686.0 µS/cm	0.00 mg/L	21.33 NTU	-202.1 mV	135.00 cm

Samples

Sample ID:

Description:

Low-Flow Test Report:

Test Date / Time: 5/25/2021 5:34:58 PM Project: Low-Flow Test 3 Operator Name: Idris

Location Name: BH403	Flow Cell Volume: 130 ml	Instrument Used: Aqua TROLL 500	
Well Diameter: 5 cm	Final Draw Down: 0 m	Serial Number: 714274	
Screen Length: 3.5 m			
Top of Screen: 4 m			
Total Depth: 7.5 m			
Initial Depth to Water: 1.98 m			

Test Notes:

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10	+/- 10	+/- 5
5/25/2021 5:34 PM	00:00		12.64 °C	1,231.9 µS/cm	4.36 mg/L	1,052.6 NTU		198.00 cm
5/25/2021 5:35 PM	01:00	7.41 pH	12.70 °C	1,234.6 µS/cm	0.17 mg/L	203.00 NTU	-169.6 mV	198.00 cm
5/25/2021 5:36 PM	02:00	7.44 pH	12.75 °C	1,236.7 µS/cm	0.01 mg/L	118.52 NTU	-179.4 mV	198.00 cm
5/25/2021 5:37 PM	03:00	7.45 pH	12.78 °C	1,229.5 µS/cm	0.00 mg/L	129.95 NTU	-185.4 mV	198.00 cm
5/25/2021 5:38 PM	04:00	7.45 pH	12.79 °C	1,223.3 µS/cm	0.00 mg/L	126.51 NTU	-189.7 mV	198.00 cm
5/25/2021 5:39 PM	05:00	7.46 pH	12.78 °C	1,219.7 µS/cm	0.00 mg/L	95.38 NTU	-193.1 mV	198.00 cm
5/25/2021 5:40 PM	06:00	7.46 pH	12.79 °C	1,217.5 µS/cm	0.00 mg/L	65.64 NTU	-195.8 mV	198.00 cm
5/25/2021 5:41 PM	07:00	7.46 pH	12.79 °C	1,216.7 µS/cm	0.00 mg/L	43.59 NTU	-198.2 mV	198.00 cm
5/25/2021 5:42 PM	08:00	7.46 pH	12.80 °C	1,215.4 µS/cm	0.00 mg/L	31.71 NTU	-200.1 mV	198.00 cm
5/25/2021 5:43 PM	09:00	7.46 pH	12.80 °C	1,215.2 µS/cm	0.00 mg/L	24.14 NTU	-201.7 mV	198.00 cm
5/25/2021 5:44 PM	10:00	7.46 pH	12.79 °C	1,214.5 µS/cm	0.00 mg/L	18.52 NTU	-203.1 mV	198.00 cm
5/25/2021 5:45 PM	11:00	7.47 pH	12.80 °C	1,213.8 µS/cm	0.00 mg/L	14.96 NTU	-204.4 mV	198.00 cm
5/25/2021 5:46 PM	12:00	7.47 pH	12.80 °C	1,213.7 µS/cm	0.00 mg/L	12.09 NTU	-205.6 mV	198.00 cm
5/25/2021 5:47 PM	13:00	7.47 pH	12.80 °C	1,213.7 µS/cm	0.00 mg/L	10.07 NTU	-206.7 mV	198.00 cm
5/25/2021 5:48 PM	14:00	7.47 pH	12.80 °C	1,212.8 µS/cm	0.00 mg/L	11.56 NTU	-207.6 mV	198.00 cm
5/25/2021 5:49 PM	15:00	7.47 pH	12.79 °C	1,214.9 µS/cm	0.00 mg/L	17.12 NTU	-207.8 mV	198.00 cm

Samples

Sample ID:

Description:

Created using VuSitu from In-Situ, Inc.

APPENDIX E Laboratory Chemical Analyses - Soils

Chemtest Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	21-14451-1		
Initial Date of Issue:	10-May-2021		
Client	Remada Ltd		
Client Address:	Forward House 17 High Street Henley in Arden B95 5AA		
Contact(s):	Greg Jones Peter Dickinson		
Project	730.02 Mumbles		
Quotation No.:	Q19-18614	Date Received:	30-Apr-2021
Order No.:	730.02	Date Instructed:	04-May-2021
No. of Samples:	11		
Turnaround (Wkdays):	5	Results Due:	10-May-2021
Date Approved:	10-May-2021		
Approved By:			
Many	r		

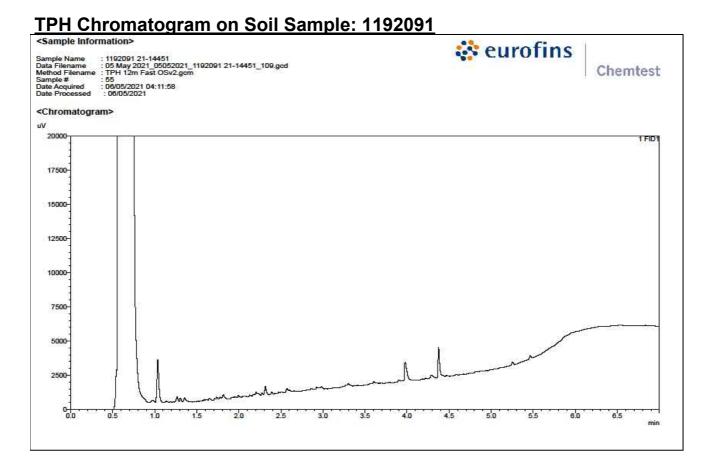
Details:

Glynn Harvey, Technical Manager

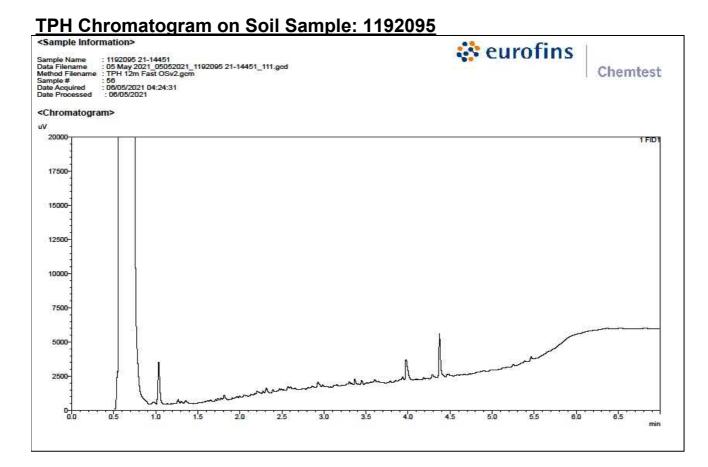
<u> Results - Soil</u>

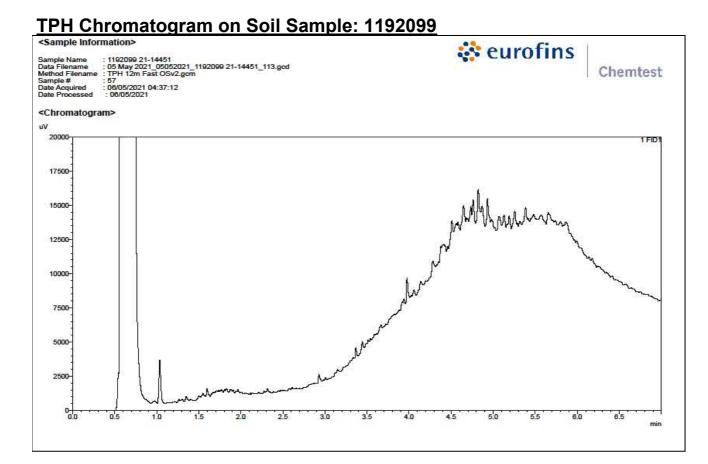
Client: Remada Ltd		Ch	omtost	Job No.:	21-14451	21-14451	21-14451	21-14451	21-14451	21-14451	21-14451	21-14451
Quotation No.: Q19-18614				nple ID.:	1192091	1192093	1192094	1192095	1192097	1192099	1192100	1192101
	_			Location:	BH401	BH401	BH401	BH402	BH402	BH403	BH403	TP1
	-			ole Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	_			epth (m):	0.3	3	3.9	1.7	2.4	1.8	2	1
		В		epth (m):	0.35	3.2	4	1.8	2.5	2.11	2.4	1.5
	_			Sampled:	27-Apr-2021	27-Apr-2021	27-Apr-2021	28-Apr-2021	28-Apr-2021	29-Apr-2021	29-Apr-2021	27-Apr-2021
			-	stos Lab:	COVENTRY			COVENTRY		COVENTRY		COVENTRY
Determinand	Accred.	SOP	Units	LOD								
АСМ Туре	U	2192		N/A	-			-		-		-
Asbestos Identification	U	2192		N/A	No Asbestos Detected			No Asbestos Detected		No Asbestos Detected		No Asbestos Detected
ACM Detection Stage	U	2192		N/A	-			-		-		-
Moisture	N	2030	%	0.020	4.2	52	32	12	50	19	28	1.6
Chromatogram (TPH)	Ν			N/A	See Attached			See Attached		See Attached		See Attached
pH	U	2010		4.0	9.0	7.9	8.2	8.8	8.1	8.5	7.8	8.7
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	< 0.40			< 0.40		< 0.40		< 0.40
Magnesium (Water Soluble)	N	2120	g/l	0.010		< 0.010	< 0.010		0.015		< 0.010	
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010		0.15	< 0.010		0.18		< 0.010	
Total Sulphur	U	2175	%	0.010		1.6	0.23		2.1		0.12	
Chloride (Water Soluble)	U	2220	g/l	0.010		0.077	0.031		0.089		0.016	
Nitrate (Water Soluble)	N	2220	g/l	0.010		< 0.010	< 0.010		< 0.010		< 0.010	
Ammonium (Water Soluble)	U	2120	g/l	0.01		0.01	< 0.01		< 0.01		< 0.01	
Sulphate (Acid Soluble)	U	2430	%	0.010		0.16	0.045		0.15		0.071	
Arsenic	U	2450	mg/kg	1.0	21			25		31		32
Beryllium	U	2450	mg/kg	1.0	< 1.0			< 1.0		< 1.0		< 1.0
Cadmium	U	2450	mg/kg	0.10	0.27			0.41		2.0		0.38
Copper	U	2450	mg/kg	0.50	2.3			27		71		6.2
Mercury	U	2450	mg/kg	0.10	< 0.10			< 0.10		0.33		< 0.10
Nickel	U	2450	mg/kg	0.50	1.5			7.8		15		2.2
Lead	U	2450	mg/kg	0.50	3.5			69		110		7.6
Selenium	U	2450	mg/kg	0.20	< 0.20			< 0.20		< 0.20		< 0.20
Vanadium	U	2450	mg/kg	5.0	< 5.0			< 5.0		7.7		< 5.0
Zinc	U	2450	mg/kg	0.50	5.6			51		230		6.4
Chromium (Trivalent)	N	2490	mg/kg	1.0	5.0			7.1		11		6.1
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50			< 0.50		< 0.50		< 0.50
Fraction of Organic Carbon	U	2625	ing/itg	0.0010	0.0025			0.049		0.051		0.022
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0			< 1.0		< 1.0		< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0			< 1.0		< 1.0		< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0			< 1.0		18		< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0			< 1.0		< 1.0		< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0			< 1.0		< 1.0		< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0			14		100		< 1.0
Aliphatic TPH >C16-C21 Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	ļ		25		1500		< 1.0
Aliphatic TPH >C21-C35 Aliphatic TPH >C35-C44	N	2680			< 1.0			25 < 1.0		560		< 1.0
•	N N		mg/kg	1.0	< 1.0			< 1.0				
Total Aliphatic Hydrocarbons		2680	mg/kg	5.0						2200		< 5.0
Aromatic TPH >C5-C7	Ν	2680	mg/kg	1.0	< 1.0			< 1.0		< 1.0		< 1.0

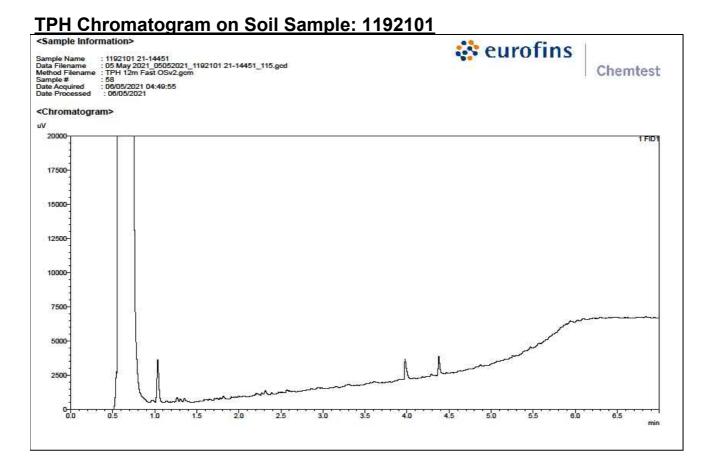
<u> Results - Soil</u>

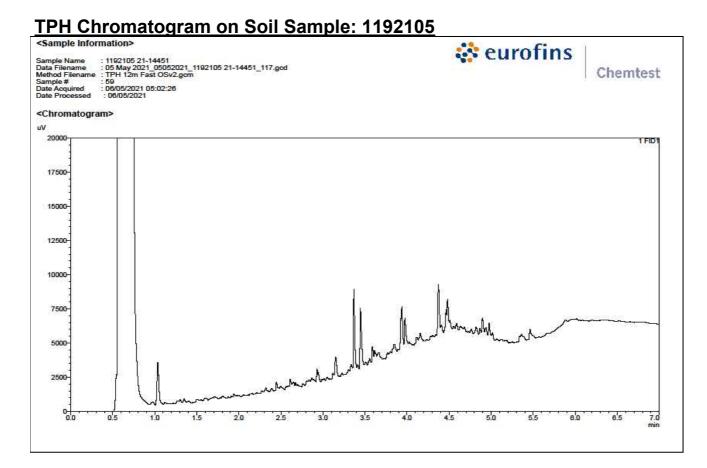

Client: Remada Ltd				Job No.:	21-14451	21-14451	21-14451	21-14451	21-14451	21-14451	21-14451	21-14451
Quotation No.: Q19-18614			test San		1192091	1192093	1192094	1192095	1192097	1192099	1192100	1192101
		5		_ocation:	BH401	BH401	BH401	BH402	BH402	BH403	BH403	TP1
				ole Type:	SOIL							
				epth (m):	0.3	3	3.9	1.7	2.4	1.8	2	1
		B		epth (m):	0.35	3.2	4	1.8	2.5	2.11	2.4	1.5
				Sampled:	27-Apr-2021	27-Apr-2021	27-Apr-2021	28-Apr-2021	28-Apr-2021	29-Apr-2021	29-Apr-2021	27-Apr-2021
			Asbes	stos Lab:	COVENTRY			COVENTRY		COVENTRY		COVENTRY
Determinand	Accred.	SOP	Units	LOD								
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0			< 1.0		< 1.0		< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0			< 1.0		3.5		< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0			< 1.0		< 1.0		< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0			< 1.0		< 1.0		< 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0			< 1.0		11		< 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0			21		940		< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0			< 1.0		200		< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0			21		1200		< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10			60		3400		< 10
Naphthalene	U	2700	mg/kg	0.10	< 0.10			< 0.10		0.76		< 0.10
Acenaphthylene	U	2700	mg/kg	0.10	< 0.10			< 0.10		0.40		< 0.10
Acenaphthene	U	2700	mg/kg	0.10	< 0.10			< 0.10		0.54		< 0.10
Fluorene	U	2700	mg/kg	0.10	< 0.10			< 0.10		0.80		< 0.10
Phenanthrene	U	2700	mg/kg	0.10	< 0.10			< 0.10		4.7		< 0.10
Anthracene	U	2700	mg/kg	0.10	< 0.10			< 0.10		0.85		< 0.10
Fluoranthene	U	2700	mg/kg	0.10	< 0.10			0.46		5.4		< 0.10
Pyrene	U	2700	mg/kg	0.10	< 0.10			0.68		6.4		< 0.10
Benzo[a]anthracene	U	2700	mg/kg	0.10	< 0.10			< 0.10		9.3		< 0.10
Chrysene	U	2700	mg/kg	0.10	< 0.10			< 0.10		5.8		< 0.10
Benzo[b]fluoranthene	U	2700	mg/kg	0.10	< 0.10			< 0.10		< 0.10		< 0.10
Benzo[k]fluoranthene	U	2700	mg/kg	0.10	< 0.10			< 0.10		< 0.10		< 0.10
Benzo[a]pyrene	U	2700	mg/kg	0.10	< 0.10			< 0.10		< 0.10		< 0.10
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	< 0.10			< 0.10		< 0.10		< 0.10
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10	< 0.10			< 0.10	1	< 0.10		< 0.10
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	< 0.10			< 0.10	1	< 0.10		< 0.10
Total Of 16 PAH's	U	2700	mg/kg	2.0	< 2.0			< 2.0	1	35		< 2.0
Benzene	U	2760	µg/kg	1.0	< 1.0			< 1.0	1	2.6		< 1.0
Toluene	U	2760	µg/kg	1.0	< 1.0			< 1.0	1	2.8		< 1.0
Ethylbenzene	U	2760	µg/kg	1.0	< 1.0			< 1.0	1	< 1.0		< 1.0
m & p-Xylene	U	2760	µg/kg	1.0	< 1.0			< 1.0		8.8		< 1.0
o-Xylene	U	2760	µg/kg	1.0	< 1.0			< 1.0	1	3.1		< 1.0
Total Phenols	U		mg/kg	0.10	< 0.10			< 0.10		< 0.10		< 0.10
	0	2920	шу/ку	0.10	× 0.10			V.IU	I	< 0.10		< 0.10

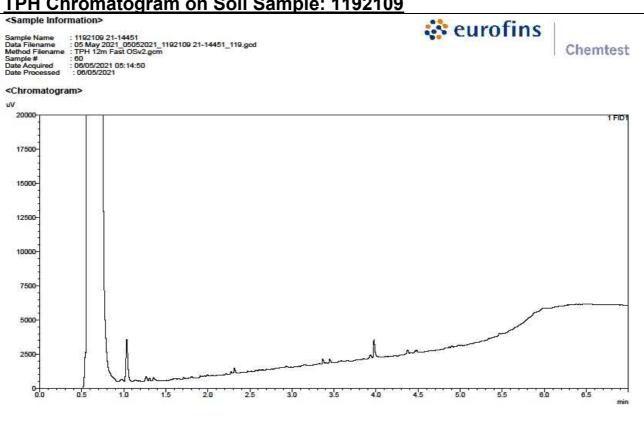
<u> Results - Soil</u>


Client: Remada Ltd		Ch	emtest	Job No.:	21-14451	21-14451	21-14451
Quotation No.: Q19-18614		Chem	test Sar	nple ID.:	1192105	1192109	1192110
		ę	Sample I	Location:	TP2	SA1	SA2
			Sam	ole Type:	SOIL	SOIL	SOIL
				epth (m):	1.5	1	1
		В	ottom D	epth (m):	2.5	1.5	1.6
			Date S	Sampled:	27-Apr-2021	27-Apr-2021	27-Apr-2021
			Asbe	stos Lab:	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD			
АСМ Туре	U	2192		N/A	-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected
ACM Detection Stage	U	2192		N/A	-	-	-
Moisture	N	2030	%	0.020	22	5.2	5.0
Chromatogram (TPH)	N			N/A	See Attached	See Attached	See Attached
pH	U	2010		4.0	8.5	8.9	9.4
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	0.41	< 0.40	< 0.40
Magnesium (Water Soluble)	N	2120	g/l	0.010			
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010			
Total Sulphur	U	2175	%	0.010			
Chloride (Water Soluble)	U	2220	g/l	0.010			
Nitrate (Water Soluble)	N	2220	g/l	0.010			
Ammonium (Water Soluble)	U	2120	g/l	0.01			
Sulphate (Acid Soluble)	U	2430	%	0.010			
Arsenic	U	2450	mg/kg	1.0	53	27	28
Beryllium	U	2450		1.0	< 1.0	< 1.0	< 1.0
Cadmium	U	2450		0.10	1.2	0.44	0.42
Copper	U	2450		0.50	160	10	18
Mercury	U	2450	mg/kg	0.10	1.7	< 0.10	< 0.10
Nickel	U	2450		0.50	22	4.5	12
Lead	U	2450	mg/kg	0.50	480	33	120
Selenium	U	-	mg/kg	0.20	0.68	< 0.20	< 0.20
Vanadium	U	2450		5.0	14	< 5.0	6.1
Zinc	U	2450	mg/kg	0.50	480	27	66
Chromium (Trivalent)	N	2490	mg/kg	1.0	12	7.1	8.7
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50
Fraction of Organic Carbon	U	2625		0.0010	0.075	0.014	0.0069
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680		1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680		1.0	260	< 1.0	3.1
Aliphatic TPH >C35-C44	N	2680	0 0	1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	260	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	0	1.0	< 1.0	< 1.0	< 1.0


<u>Results - Soil</u>


Client: Remada Ltd				Job No.:	21-14451	21-14451	21-14451
Quotation No.: Q19-18614				nple ID.:	1192105	1192109	1192110
		S		ocation:	TP2	SA1	SA2
			Samp	le Type:	SOIL	SOIL	SOIL
				epth (m):	1.5	1	1
		B	ottom De	epth (m):	2.5	1.5	1.6
			Date S	ampled:	27-Apr-2021	27-Apr-2021	27-Apr-2021
			Asbes	stos Lab:	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD			
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	4.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	50	< 1.0	7.6
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	590	< 1.0	47
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	650	< 5.0	54
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	910	< 10	58
Naphthalene	U	2700	mg/kg	0.10	0.98	< 0.10	< 0.10
Acenaphthylene	U	2700	mg/kg	0.10	1.2	< 0.10	< 0.10
Acenaphthene	U	2700	mg/kg	0.10	0.78	< 0.10	< 0.10
Fluorene	U	2700	mg/kg	0.10	1.0	< 0.10	< 0.10
Phenanthrene	U	2700	mg/kg	0.10	5.8	1.6	1.2
Anthracene	U	2700	mg/kg	0.10	1.5	0.48	0.30
Fluoranthene	U	2700	mg/kg	0.10	9.1	4.2	2.3
Pyrene	U	2700	mg/kg	0.10	8.3	4.2	2.4
Benzo[a]anthracene	U	2700	mg/kg	0.10	4.6	2.7	1.2
Chrysene	U	2700	mg/kg	0.10	4.1	2.3	0.84
Benzo[b]fluoranthene	U	2700	mg/kg	0.10	6.4	3.6	1.8
Benzo[k]fluoranthene	U	2700	mg/kg	0.10	2.0	1.2	0.62
Benzo[a]pyrene	U	2700	mg/kg	0.10	4.6	2.4	1.1
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	4.9	< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10	1.1	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	6.4	< 0.10	< 0.10
Total Of 16 PAH's	U	2700	mg/kg	2.0	63	23	12
Benzene	U	2760	µg/kg	1.0	11	< 1.0	1.2
Toluene	U	2760	µg/kg	1.0	56	< 1.0	2.2
Ethylbenzene	U	2760	µg/kg	1.0	24	< 1.0	< 1.0
m & p-Xylene	U	2760	µg/kg	1.0	110	< 1.0	2.7
o-Xylene	U	2760	µg/kg	1.0	70	< 1.0	< 1.0
Total Phenols	U	2920	mg/kg	0.10	< 0.10	< 0.10	< 0.10




Page 6 of 14

TPH Chromatogram on Soil Sample: 1192109

TPH Chromatogram on Soil Sample: 1192110

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	pН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35– C44Aromatics: >C5–C7, >C7–C8, >C8– C10, >C10–C12, >C12–C16, >C16– C21, >C21– C35, >C35– C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.

Report Information

Key	
U	UKAS accredited
Μ	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently

corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

APPENDIX F Laboratory Chemical Analyses -Groundwater

🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	21-18404-1		
Initial Date of Issue:	07-Jun-2021		
Client	Remada Ltd		
Client Address:	Forward House 17 High Street Henley in Arden B95 5AA		
Contact(s):	Greg Jones Peter Dickinson		
Project	730.03 Former Halfway Garage, Mumbles		
Quotation No.:	Q19-18614	Date Received:	27-May-2021
Order No.:	730.03	Date Instructed:	01-Jun-2021
No. of Samples:	3		
Turnaround (Wkdays):	5	Results Due:	07-Jun-2021
Date Approved:	07-Jun-2021		
Approved By:			

Handrey

Details:

Glynn Harvey, Technical Manager

Project: 730.03 Former Halfway Garage, Mumbles

Client: Remada Ltd		Ch	emtest .	Job No.:	21-18404	21-18404	21-18404
Quotation No.: Q19-18614		Chem	test San	nple ID.:	1211805	1211806	1211807
	Sample Location:				BH401	BH402	BH403
			Samp	ole Type:	WATER	WATER	WATER
			Date S	Sampled:	25-May-2021	25-May-2021	25-May-2021
Determinand	Accred.	SOP	Units	LOD			
рН	U	1010		N/A	8.3	8.3	8.3
Arsenic (Dissolved)	U	1455	µg/l	0.20	2.0	3.3	3.0
Boron (Dissolved)	U	1455	µg/l	10.0	320	310	180
Beryllium (Dissolved)	U	1455	µg/l	1.00	< 1.0	< 1.0	< 1.0
Cadmium (Dissolved)	U	1455	µg/l	0.11	< 0.11	< 0.11	< 0.11
Copper (Dissolved)	U	1455	µg/l	0.50	0.51	< 0.50	< 0.50
Mercury (Dissolved)	U	1455	µg/l	0.05	< 0.05	< 0.05	< 0.05
Nickel (Dissolved)	U	1455	µg/l	0.50	< 0.50	0.64	< 0.50
Lead (Dissolved)	U	1455	µg/l	0.50	< 0.50	< 0.50	< 0.50
Selenium (Dissolved)	U	1455	µg/l	0.50	< 0.50	< 0.50	< 0.50
Vanadium (Dissolved)	U	1455	µg/l	0.50	< 0.50	< 0.50	< 0.50
Zinc (Dissolved)	U	1455	µg/l	2.5	< 2.5	< 2.5	< 2.5
Chromium (Trivalent)	Ν	1490	µg/l	20	[B] < 20	[B] < 20	[B] < 20
Chromium (Hexavalent)	U	1490	µg/l	20	[B] < 20	[B] < 20	[B] < 20
Dissolved Organic Carbon	U	1610	mg/l	2.0	7.6	4.8	3.3
Aliphatic TPH >C5-C6	Ν	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C6-C8	Ν	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C8-C10	Ν	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C10-C12	Ν	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C12-C16	Ν	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C16-C21	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C21-C35	Ν	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C35-C44	Ν	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10
Total Aliphatic Hydrocarbons	Ν	1675	µg/l	5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	Ν	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C7-C8	Ν	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C8-C10	Ν	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C10-C12	Ν	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C12-C16	Ν	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C16-C21	Ν	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C21-C35	Ν	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C35-C44	Ν	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10
Total Aromatic Hydrocarbons	Ν	1675	µg/l	5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	Ν	1675	µg/l	10	< 10	< 10	< 10
Naphthalene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10
Fluorene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10
Anthracene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10

Project: 730.03 Former Halfway Garage, Mumbles

Client: Remada Ltd		Chemtest Job No.:				21-18404	21-18404
Quotation No.: Q19-18614		Chemtest Sample ID.:			1211805	1211806	1211807
		5	Sample I	Location:	BH401	BH402	BH403
			Sam	ole Type:	WATER	WATER	WATER
			Date S	Sampled:	25-May-2021	25-May-2021	25-May-2021
Determinand	Accred.	Accred. SOP Units LOD					
Pyrene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10
Chrysene	N	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	U	U 1700 µg/l 0.10		< 0.10	< 0.10	< 0.10	
Benzo[k]fluoranthene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	N	1700	µg/l	2.0	< 2.0	< 2.0	< 2.0
Phenol	U	1920	mg/l	0.0050	< 0.0050	< 0.0050	< 0.0050

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
1211805			BH401	25-May-2021	В	Coloured Winchester 1000ml
1211805			BH401	25-May-2021	В	EPA Vial 40ml
1211806			BH402	25-May-2021	В	Coloured Winchester 1000ml
1211806			BH402	25-May-2021	В	EPA Vial 40ml
1211807			BH403	25-May-2021	В	Coloured Winchester 1000ml
1211807			BH403	25-May-2021	В	EPA Vial 40ml

Test Methods

SOP	Title	Parameters included	Method summary				
1010	pH Value of Waters	рН	pH Meter				
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	determination by inductively coupled plasma				
1490	Hexavalent Chromium in Waters	Chromium [VI]	Automated colorimetric analysis by 'Aquakerr 600' Discrete Analyser using 1,5- diphenylcarbazide.				
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation				
1675	TPH Aliphatic/Aromatic split in Waters by GC-FID(cf. Texas Method 1006 / TPH CWG)	Aliphatics: >C5–C6, >C6–C8, >C8– C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35– C44Aromatics: >C5–C7, >C7–C8, >C8– C10, >C10–C12, >C12–C16, >C16– C21, >C21– C35, >C35– C44	Pentane extraction / GCxGC FID detection				
1700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)				
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.				

Report Information

Key	
U	UKAS accredited
Μ	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently

corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

APPENDIX G Laboratory Geotechnical Tests

Contract Number: 53774

Client Ref: **730.20** Client PO:

Report Date: 20-05-2021

Client Remada Limited Forward house, 17 high street, Henley in Arden B95 5AA

Contract Title: Mumbles, Swansea For the attention of: Dom Williams

Date Received: **04-05-2021** Date Completed: **20-05-2021**

Test Description	Qty
Samples Received - @ Non Accredited Test	4
Moisture Content BS 1377:1990 - Part 2 : 3.2 - * UKAS	4
4 Point Liquid & Plastic Limit BS 1377:1990 - Part 2 : 4.3 & 5.3 - * UKAS	4
PSD Wet Sieve method BS 1377:1990 - Part 2 : 9.2 - * UKAS	4
Quick Undrained Triaxial Compression Test - Multi-stage Loading of a single specimen (100mm diameter) BS 1377:1990 - Part 7 : 9 - * UKAS	2
Samples Received - @ Non Accredited Test	10
Disposal of samples for job	1

Notes: Observations and Interpretations are outside the UKAS Accreditation

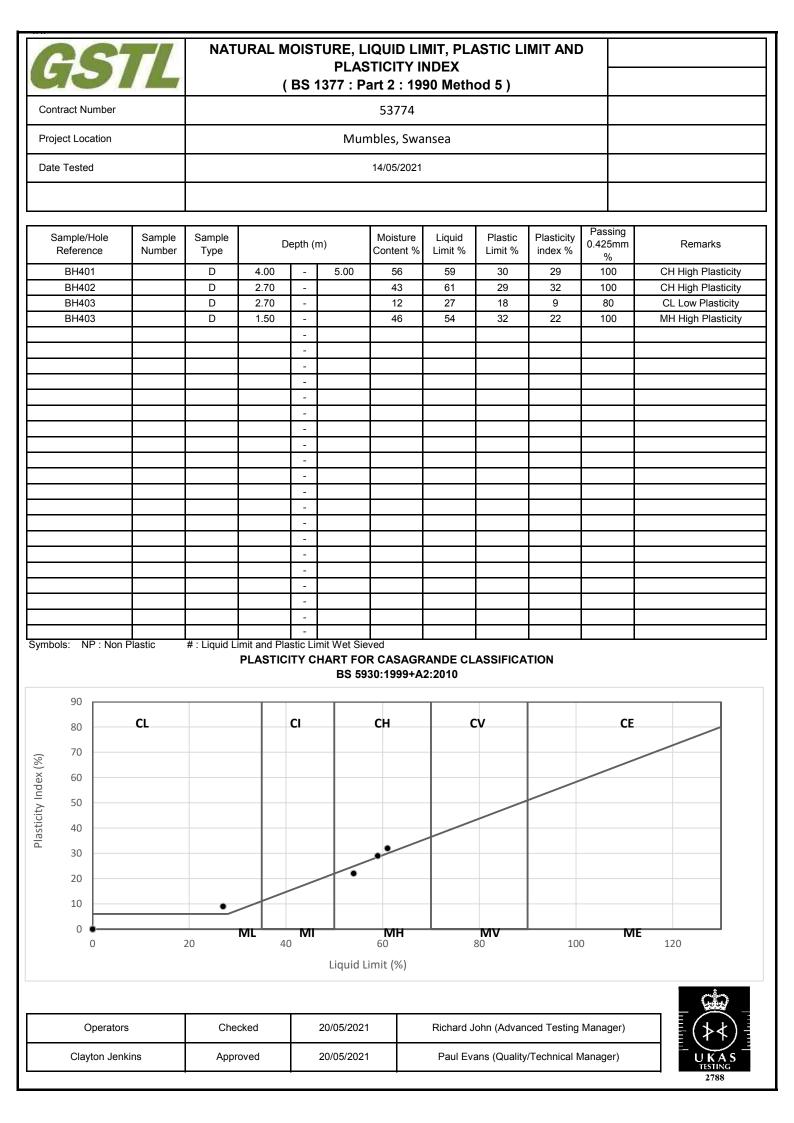
* - denotes test included in laboratory scope of accreditation

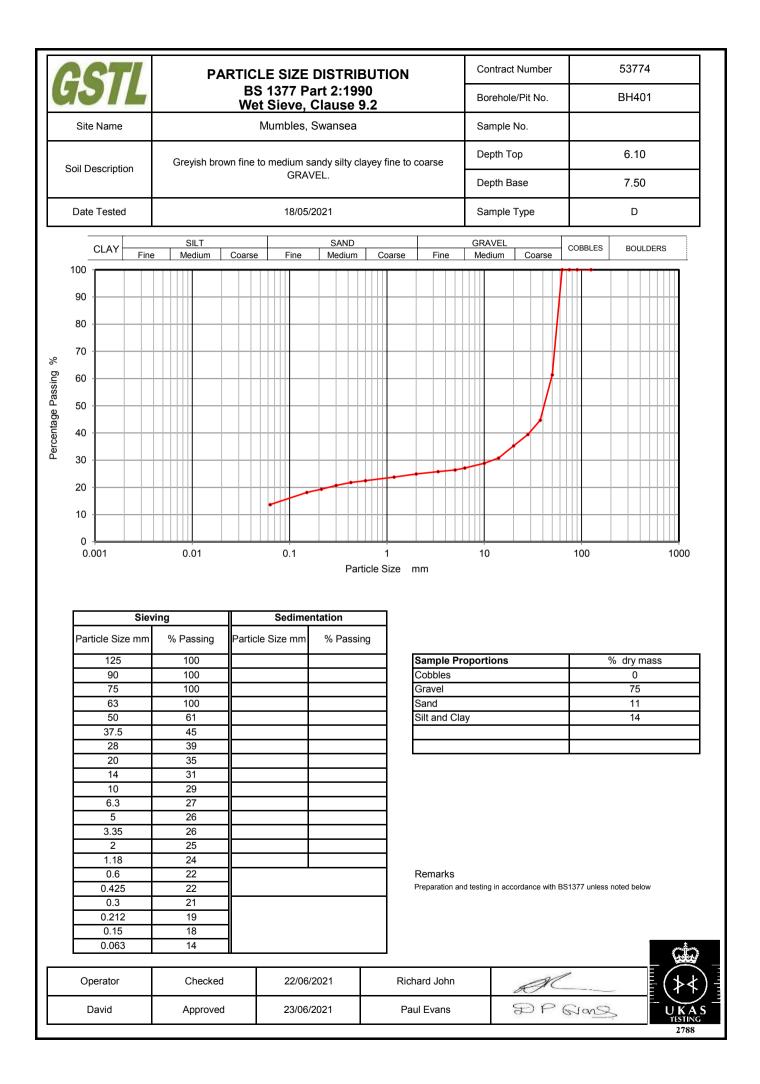
- denotes test carried out by approved contractor

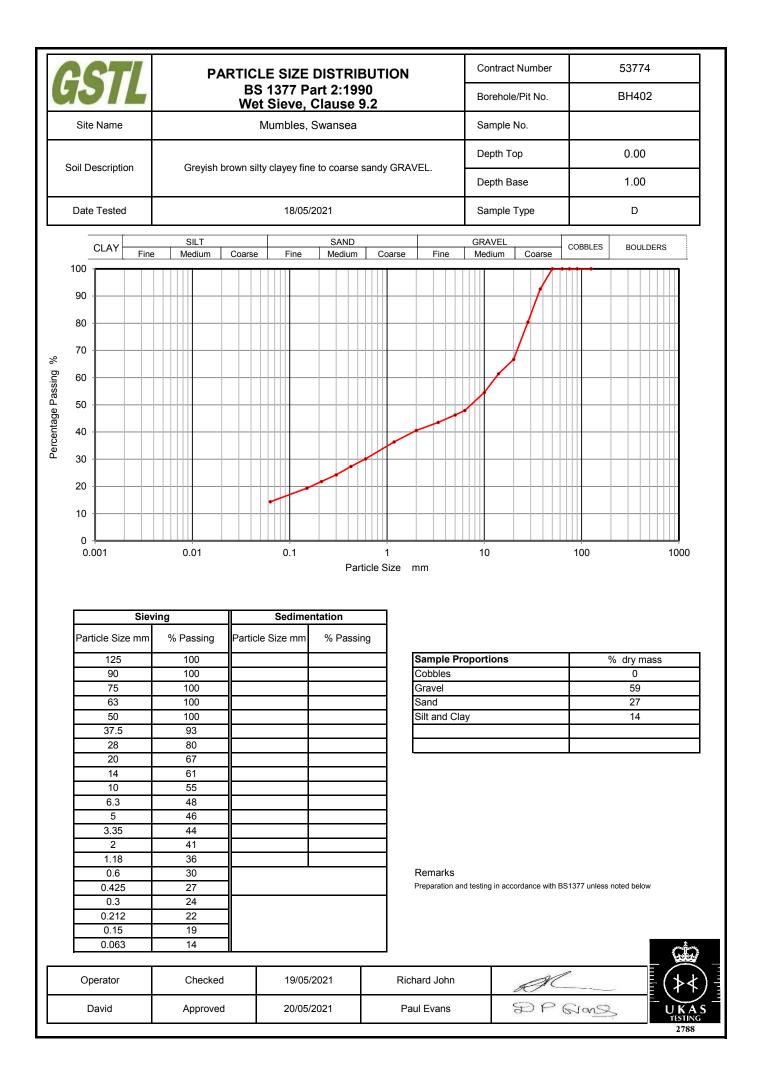
@ - denotes non accredited tests

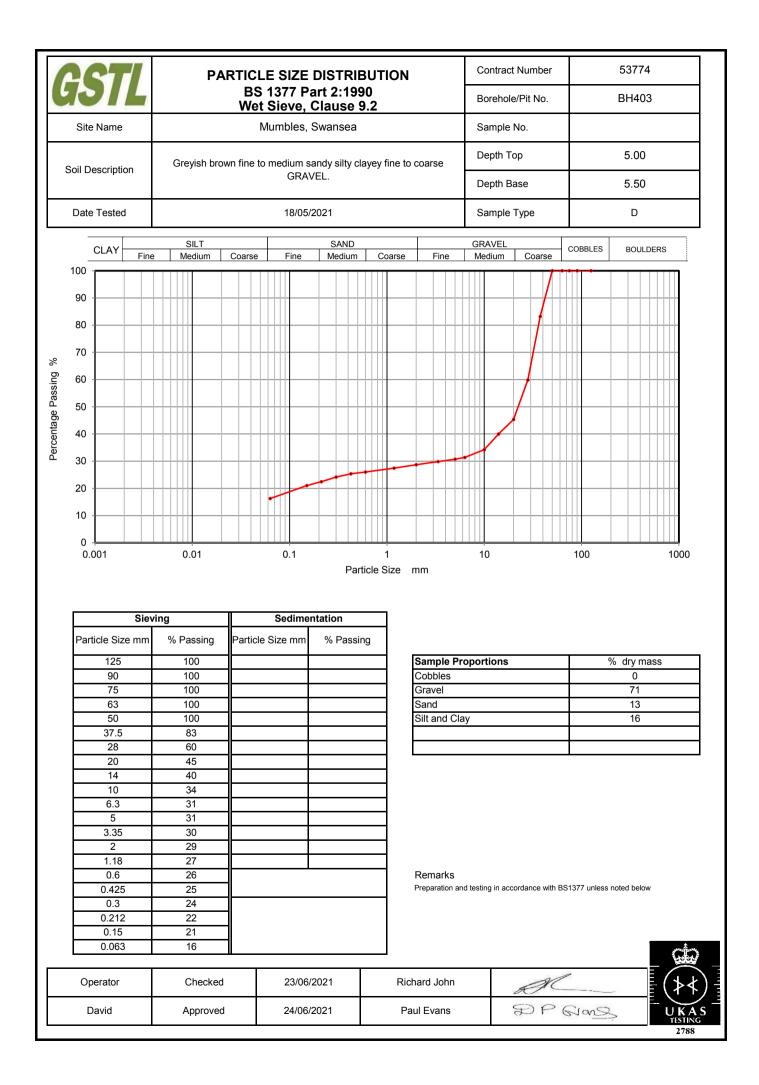
This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory. Approved Signatories:

Emma Sharp (Office Manager) - Paul Evans (Director) - Richard John (Quality/Technical Manager) Shaun Jones (Laboratory manager) - Wayne Honey (Administrative/Quality Assistant)


GEO Site & Testing Services Ltd Unit 3-4, Heol Aur, Dafen Ind Estate, Dafen, Llanelli, Carmarthenshire SA14 8QN Tel: 01554 784040 Fax: 01554 784041 info@gstl.co.uk gstl.co.uk


GSTL	NATURAL MOISTURE, LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5)	
Contract Number	53774	
Site Name	Mumbles, Swansea	
Date Tested	14/05/2021	
	DESCRIPTIONS	


Sample/Hole Reference	Sample Number	Sample Type	D	Depth (m)		Descriptions
BH401		D	4.00	-	5.00	Greyish brown silty CLAY.
BH402		D	2.70	-		Greyish brown silty CLAY.
BH403		D	2.70	-		Brown fine to medium gravelly silty CLAY.
BH403		D	1.50	-		Greyish brown clayey SILT.
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		


Operators	Checked	20/05/2021	Richard John (Advanced Testing Manager)
Clayton Jenkins	Approved	20/05/2021	Paul Evans (Quality/Technical Manager)

	PCT/	РА	RTICLE SIZE			ION	Co	ontract N	lumber			5377	′4	
Ľ	iSTL	t	BS 1377 P Wet Sieve,				Во	orehole/I	Pit No.			BH40)2	
	Site Name		Mumbles,	Swansea			Sa	imple N	0.					
Ę	Soil Description	Grevish brown	fine slightly gravelly	, fine to mer	lium s	andv silty CLAY		epth Top)			4.00)	
			ine ongray gravery	1110 to				epth Bas	se			5.00)	
	Date Tested		18/05/	/2021			Sa	imple Ty	ype			D		
	CLAY	SILT ne Medium	Coarse Fine	SAND Medium		oarse Fine	GRA Med	AVEL	Coarse	co	OBBLES	BOUI	LDERS	
	100									┝	'			` T
	90 -													
	80 -													
	70													
% ɓu	60 -													
Percentage Passing	50 -													
untage	40													
Perce	30													
	20 -													
	10													
	0.001	0.01	0.1			1	10)			100		1	000
				Par	rticle S	Size mm								
	Si	eving	Sedime	ntation		1								
	Particle Size mm	n % Passing	Particle Size mm	% Passii	ng									
	125	100				Sample P	roport	ions			0	% dry m	nass	
	90 75	100	┨────┤		!	Cobbles				+		0		
	63	100	╢────┤		!	Gravel Sand						1		
	50	100	╢───┤			Sand Silt and C	·lov			-+		87		
	37.5	100	╢───┤				lay					01		———————————————————————————————————————
	28	100	╢───┤			┨ ┣━━━━								+
	20	100	╢───┤			┦└───								
	14	100	┨────┤]	4								
	14		╢────┤		!	4								
		100	╢────┤		!	4								
	6.3	100	╢────┤			1								
	5	100	┨────┤		I	1								
	3.35	100			'	1								
	2	99		<u> </u>	I	1								
	1.18	98		ı,	I	J								
					I	Remarks								
	0.6					Preparation a	and testing	g in accor	dance witl	n BS13	77 unless	noted belo	w	
	0.6 0.425	94	1											
			┨			1								
	0.425 0.3	94]											
	0.425 0.3 0.212	94 93 91	 											
	0.425 0.3 0.212 0.15	94 93 91 91												.
	0.425 0.3 0.212	94 93 91												
[0.425 0.3 0.212 0.15	94 93 91 91	19/05/	/2021		Richard John			N					
	0.425 0.3 0.212 0.15 0.063	94 93 91 91 87						1 00	N DP	6	2 not	~		

0	C T	Multi	Stage Und			ndrained Triaxial	Contract Number	53774		
5	SIL		BS 1		est 990 Pari	Borehole/Pit No.	BH403			
Ş	Site Name			Mumbles, Swansea Sample No.						
01	il Deservicións	Oraș inte t		Depth Top 4.00						
501	il Description		Greyisht	orown nne	gravenys		Depth Base	4.45 U		
D	Date Tested			12/05	5/2021		Sample Type			
							Technician	Daniel		
	400									
	350				4					
Pa	300									
Corrected Deviator Stress kPa	250									
or Str	200									
eviat										
cted D	150	p	~							
Corre	100	¢								
	50							Stage 2		
								Stage 3		
	0 ¢ 0.0	2.	.0	4.0	6. Axial St	rain %	10.0 Post Test	12.0 14.0 Sample Split		
	Moisture Conte	nt (%)		41		Specifien		Sample Spirt		
	Bulk Density (M	1g/m ³)	1.76				1 60	and singer		
	Dry Density (M	-	1.24			12		A HAR A		
	Specimen Length (mm) Specimen Diamteter (mm)		183.2 i) 105			100		- 5		
			00	100	220	1 1 2 2 2	mon in the	1. Martin		
	Cell Pressures Deviator Stress		80 168	160 231	320 348	1 margaret	The second of the	" !! He		
	ained Shear Str			115	174		and the start			
	Failure Strain		3.3	5.5	9.8	A HERE	Charles Mark	Press States		
Mode Of Failure				Plastic		and the second	the state of the s	a stand for		
Membrane Used/Thickness			R	ubber/0.3m	1m		Mante M	THE A		
 	Rate of Strain (%/min)		3.00						
	Checked		19/05/2021			Richard John	R P Gio			
	Approved		20/05/20	21		Paul Evans	9 P Qo	UKAS TESTING 2788		

CCTI	Multi Sta	age Unc		lated-Un est	drained Triaxial	Contract Number	53774
GSTL		BS 1	BH401				
Site Name		Mumbles	, Swansea		Sample No.		
Osil Description						Depth Top	4.00
Soil Description		Greyish L	frown line	gravelly s	IILY CLAY.	Depth Base	4.45
Date Tested			12/05	5/2021	U		
						Technician	Daniel
350 300 250 250 300 250 300 300 300 300 300 300 300 300 300 3	2.0		4.0	6.0 Axial Str		a → ↓ ↓ ↓ a → ↓ ↓ ↓ 10.0	▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
Moisture Content Bulk Density (Mg/ Dry Density (Mg/r	m ³)		46 0.84 0.58		Specimen	Post Test	Sample Split
Specimen Length (Specimen Diamteter		210 150					inter .
		80	160	200			1 at a family of
Cell Pressures (kl Deviator Stress (k		80 216	160 249	320 294	When the second		A A A A
Undrained Shear Streng		108	125	147	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	The Call	Land Mart
Failure Strain (%		7.6	9.5	11		The Alera	C. P. C. Martin = a
Mode Of Failure		Plastic			1 miles	State L	CONTRACT CONTRACTOR
Membrane Used/Thio		Rubber/0.3mm			The second with		- and
Rate of Strain (%/r	min)		3.00				participantes
Checked		19/05/2021 R			Richard John	ul Evans DP Grons	
Approved							

Qty

1

1

1

Contract Number: 54099

Client Ref: **730.20** Client PO:

Laboratory Report

Report Date: 28-05-2021

Client Remada Limited Forward house, 17 high street, Henley in Arden B95 5AA

Contract Title: Mumbles, Swansea For the attention of: Dom Williams

Date Received: **21-05-2021** Date Completed: **28-05-2021**

Test Description

Moisture Content BS 1377:1990 - Part 2 : 3.2 - * UKAS

4 Point Liquid & Plastic Limit

BS 1377:1990 - Part 2 : 4.3 & 5.3 - * UKAS

PSD Wet Sieve method

BS 1377:1990 - Part 2 : 9.2 - * UKAS

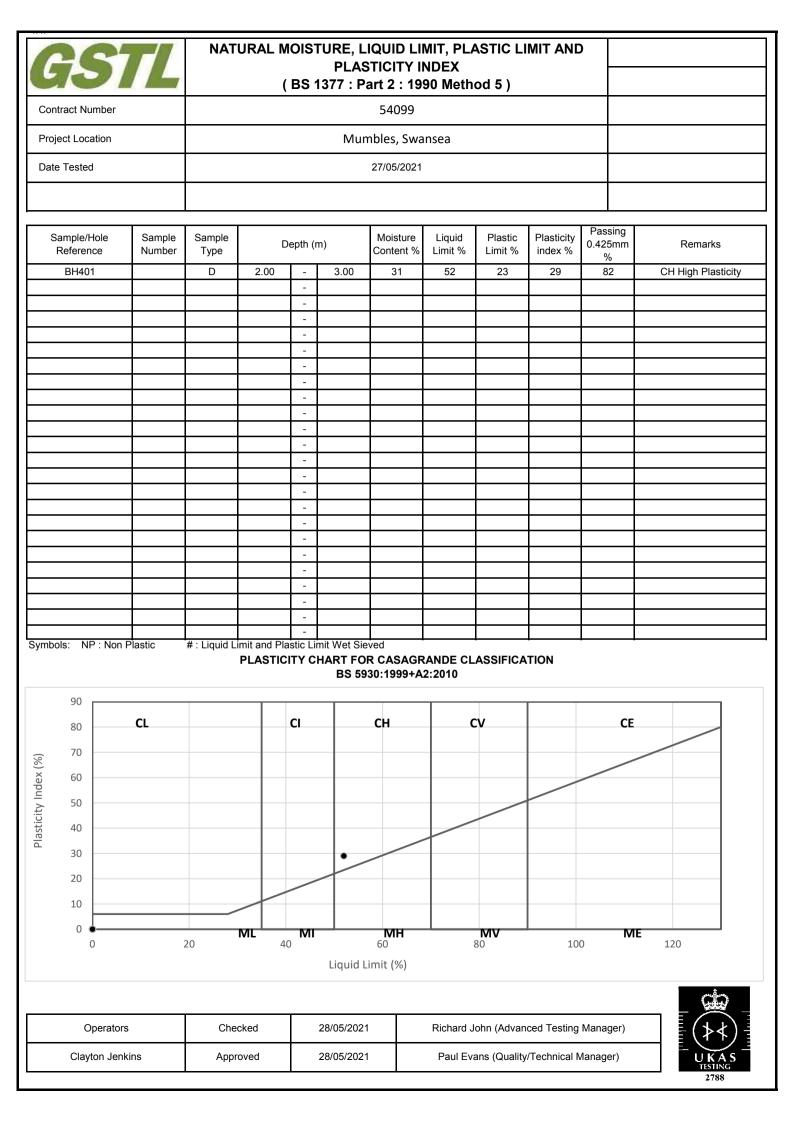
Notes: Observations and Interpretations are outside the UKAS Accreditation

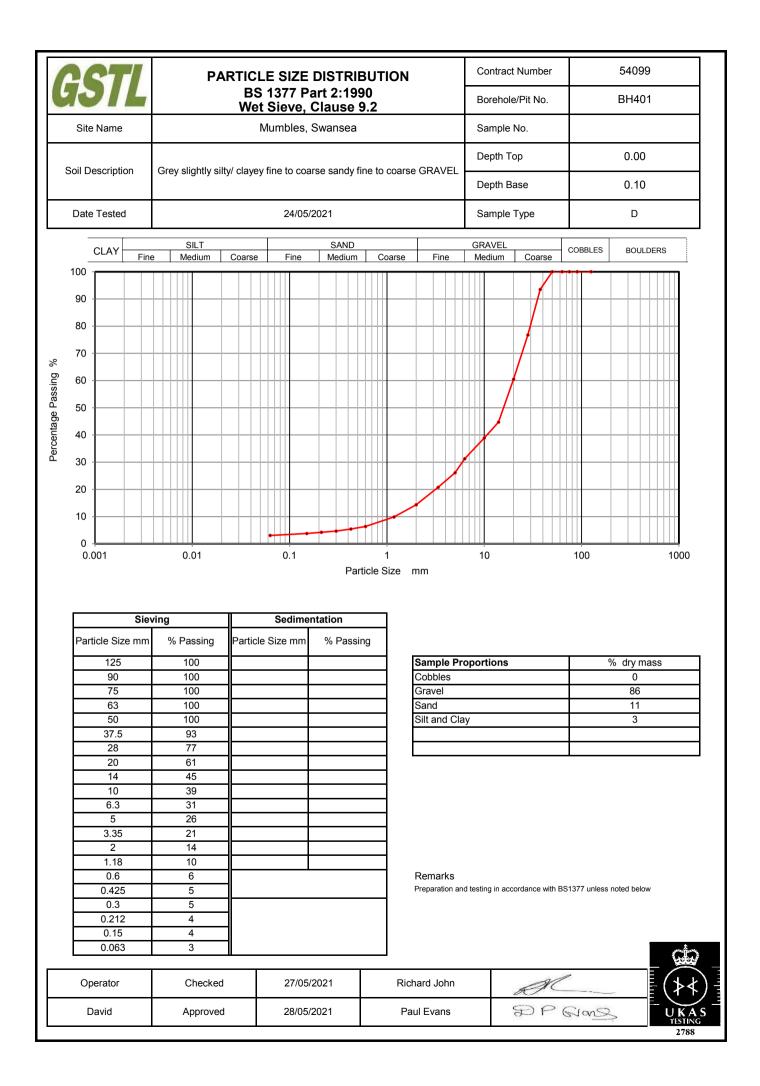
- * denotes test included in laboratory scope of accreditation
- # denotes test carried out by approved contractor
- @ denotes non accredited tests

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved Signatories:

Emma Sharp (Office Manager) - Paul Evans (Director) - Richard John (Quality/Technical Manager) Shaun Jones (Laboratory manager) - Wayne Honey (Administrative/Quality Assistant)


GEO Site & Testing Services Ltd Unit 3-4, Heol Aur, Dafen Ind Estate, Dafen, Llanelli, Carmarthenshire SA14 8QN Tel: 01554 784040 Fax: 01554 784041 info@gstl.co.uk gstl.co.uk


GSTL	NATURAL MOISTURE, LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5)	
Contract Number	54099	
Site Name	Mumbles, Swansea	
Date Tested	27/05/2021	
	DESCRIPTIONS	

Sample/Hole Reference	Sample Number	Sample Type	D	epth (r	n)	Descriptions
BH401		D	2.00	-	3.00	Brown gravelly silty CLAY
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		

Operators	Checked	28/05/2021	Richard John (Advanced Testing Manager)
Clayton Jenkins	Approved	28/05/2021	Paul Evans (Quality/Technical Manager)

1 Capital Quarter Tyndall Street Cardiff CF10 4BZ

wsp.com