PHASE 2 GROUND INVESTIGATION

Lidl Great Britain Ltd

Former Severn Bridge Club, Chepstow

Remada Ltd www.remada.co.uk

Client: Lidl Great Britain Ltd

799.02.02 July 2021

Executive Summary

Remada Ltd was commissioned by Lidl Great Britain Ltd to conduct a Phase 2 Ground Investigation at the former Severn Bridge Club, Bulwark Road, Bulwark, Chepstow, NP16 5QZ. This report follows a Phase 1 Preliminary Risk Assessment (Remada report reference 799.01.01 dated December 2020, reissued in July 2021 with reference 799.01.02).

Summary of Phase 1 Desk Study

The earliest available historic mapping of 1881 indicates the site to be occupied by a residential property 'Fairfield Lodge' with associated garden, woodland and fields. By 1901 the site was being referred to as Fairfield Farm. By 1921, the former field in the eastern margin of the site had been redeveloped by housing blocks of the wider Bulwark Village, which remained until their demolition between 1971 and 1977. The existing Severn Bridge Social Club was developed between 1955 and 1966.

Intrusive Investigation

The investigation comprised the drilling of eight (8 No) window sample holes (WS1 – WS8) and execution of four (4 No) CBR tests at locations indicated on **Figure 2** between 30th November and 1st December 2020. Due to the nature of the encountered ground conditions, Remada returned to site on Monday 4th January 2021 to undertake additional investigation. This comprised the drilling of two (2 No) rotary boreholes (BH101 and BH102) within the proposed building footprint.

Made Ground was encountered within all ten exploratory holes on-site (WS1 – WS8 and BH101 – 102) and was typically a thin veneer less that 1.0m thick. The maximum thickness of made ground of 1.55m was recorded in WS5 in the southern area of the site.

The published geology indicates the site is directly underlain by Mercia Mudstone Group bedrock, with limestone and dolostone geological units being located off-site to the north. During the window sampling on-site, all the eight boreholes refused within a light brown clayey sandy limestone gravel at depths of between 1.0m and 1.7m bgl.

Subsequent rotary drilling by Remada identified the site to be underlain by yellowish brown limestone bedrock, which was cored to a depth of 4.5m in two locations under the building footprint. The bedrock was recorded as being strong to very strong during field tests, as it required multiple blows of a geological hammer to fracture. The limestone bedrock underlying the site is considered to be representative of the Gully Oolite Formation or Llanelli Formation units recorded to the north and north-east respectively.

Human Health Assessment

The results of soil chemical analysis were compared to Human Health Generic Assessment Criteria for commercial land use. Dibenz(ah)anthracene was identified in the made ground sample from WS6 at 0.2 - 0.5m bgl at a concentration of 3.8mg/kg however the 95 percentile value is less the applicable GAC of 3.6 mg/kg. Chrysotile asbestos cement was identified in the sample from WS8 at 0.1 - 0.6m bgl, recording a total concentration of 0.059%.

It is recommended that an asbestos risk assessment is undertaken prior to the commencement of redevelopment works.

Water Resources Assessment

The results of the soil chemical analysis undertaken has identified that concentrations of metals and inorganic contaminants are within the range of typical made ground. Detectable concentrations of TPH and PAHs were encountered in some samples. However, the contaminants identified are of low solubility and mobility and as such are unlikely to present a risk to groundwater beneath the site. In addition, it should be noted that the site will be predominantly covered with the building and areas of hardstanding. Therefore, the risk of leaching of contaminants as a result of infiltration of groundwater is likely to be limited and does not warrant further consideration.

Waste Classification

In general, the results of the chemical analysis indicates that the material would be classified as non-hazardous waste. While Waste Acceptance Criteria (WAC) analysis has not been undertaken, four of the five samples selected for analysis exceeded this TOC limit for disposal in an inert landfill. Therefore, it is considered that the waste should be classified as non-hazardous. WAC testing is not required for disposal of non-hazardous waste to landfill.

Two samples of bituminous surfacing was analysed for concentrations of PAH compounds. The results indicated that the concentrations of PAHs were very low (sum <2.0 mg/kg) and benzo(a)pyrene <0.1mg/kg was below the 50mg/kg limit defined in WM3. Therefore, the bituminous surfacing represented by this sample would be classified as non-hazardous waste.

Geotechnical Assessment

It was anticipated that the site would directly underlain by Mercia Mudstone however the window sample rig proved N values of greater than 50 were proven at 1.0 to 1.7m bgl. Consequently, two rotary core holes were bored at two locations within the proposed store footprint and recovered a yellowish-brown limestone bedrock to a depth of 4.5m. Point load testing of recovered samples from the shallow bedrock corresponded with published values for carbonate siltstone/sandstone.

Either pad foundation or stiffened raft down stands bearing directly on the limestone of N > 50 and encountered at circa one metre depth is considered a suitable foundation solution. Removal and recompaction of the existing shallow made ground as observed outside the existing footprint may provide a suitable formation for a ground bearing floor slab if correctly engineered. In the event that deeper made ground is encountered following demolition of the existing building, proposed foundations should be deepened as necessary to bear on the underlying bedrock.

Finished floor levels are not known at the time of writing this report and it is assumed that these will be close to existing levels. It is important that any voids resulting from the removal of existing foundations are compacted to an appropriate engineering standard prior to the construction of the raft foundation or ground bearing floor slab.

A Design Sulphate Class DS-1 is considered appropriate for buried concrete and an ACEC Class of AC-1 is considered appropriate for the location.

Shallow limestone bedrock that was encountered will require a 360 tracked excavator (or similar) to break out.

Ground Gas & Radon

The results of four rounds of gas monitoring visits placed the site into Characteristic Situation 1 and therefore ground gas protection measures will not be required within the proposed buildings. However, basic radon protection measures are required. A radon / ground gas membrane will need to be installed and verified in accordance with CIRIA C735 Good Practice on the Testing & Verification of Protection Systems for Buildings Against Hazardous Ground Gases (2014) which sets out industry good practice.

1	INTRODUCTION	5
	1.1 Objectives	5 5
2	SUMMARY OF PHASE 1 DESK STUDY	7
-	ENVIRONMENTAL & GEOTECHNICAL INVESTIGATION METHODOLOGY	
	3.1 Investigation Strategy 3.2 Intrusive Investigation 3.3 Soil Sampling 3.4 Gas and Groundwater Monitoring 3.5 Quality Assurance and Quality Control 3.6 Laboratory Testing	
4	GEOTECHNICAL & ENVIRONMENTAL INVESTIGATION FINDINGS	12
	 4.1 GROUND CONDITIONS 4.2 IN-SITU TESTING 4.3 SOIL OBSERVATIONS 4.4 GROUNDWATER OBSERVATIONS 4.5 CHEMICAL ANALYSIS 4.6 GEOTECHNICAL TESTING 4.7 GROUND GAS MONITORING RESULTS 	
5	GENERIC QUANTITATIVE RISK ASSESSMENT	16
	 HUMAN HEALTH RISK ASSESSMENT	
6	GEOTECHNICAL SITE ASSESSMENT:	20
	 GEOTECHNICAL CONSIDERATIONS FOUNDATIONS IMPORTED FILL Excavations and Temporary Works Existing Car Park Surfacing PROTECTION OF BURIED CONCRETE General Construction Advice 	20 20 20 20 20 20 21
7	CONCLUSIONS & RECOMENDATIONS	22
7	7.1 CONCLUSIONS 7.2 RECOMMENDATIONS 7.3 GROUND GAS	23
RE	FERENCES & GUIDANCE	24
ST	UDY LIMITATIONS	25

TABLES

Table 1	Outline Conceptual Site Model
Table 2	Monitoring Well Installation Details
Table 3	Gas & Groundwater Monitoring Data
Table 4	Comparison of Soil Chemical Analyses with GAC

Conceptual Site Model
l

GRAPHS

Graph 1 Plot of Corrected SPT N60 Values vs Depth

FIGURES

Figure 1Site Location PlanFigure 2Exploratory Hole Location PlanFigure 3Proposed Site Layout Plan

EXPLORATORY LOGS

APPENDICES

Appendix ADynamic Cone Penetrometer Test ResultsAppendix BLaboratory Chemical AnalysesAppendix CLaboratory Geotechnical TestsAppendix DSPT Hammer Calibration

Issue No	Date	Prepared By		Technical Rev	/iew	Authorised	
01	01.02.2021	P Dickinson	P. Did.	G Jones	Hores	G Jones	Hore
02 – Revised Layout	13.07.2021	P Dickinson	P.D.L.	G Jones	Three	G Jones	There

1 INTRODUCTION

Remada Ltd was commissioned by Lidl Great Britain Ltd to conduct a Phase 2 Ground Investigation at the former Severn Bridge Club, Bulwark Road, Bulwark, Chepstow, NP16 5QZ, at the location indicated in **Figure 1**.

1.1 Objectives

The objectives of this assessment are as follows:

- to examine whether there have been any potentially contaminative uses on the site or nearby land;
- to develop a conceptual model of the site to identify plausible pollutant linkages;
- to assess ground conditions in relation to the proposed development in relation to construction design issues including the presence, nature, likely severity and extent of soil and groundwater contamination, which may be present, its potential environmental impact and likely requirement for further work; and
- Provide preliminary foundation design recommendations for the proposed development.

1.2 Scope of Work

The scope of the investigation is generally in accordance with BS10175:2011+A2 2017 and layout of this report has been designed in mind of the Environment Agency's Land Contamination Risk Management guidance for land contamination reports.

The scope of work comprised:

- 4 No window sample boreholes to target depths of 6m including SPTs;
- 4 No window sample boreholes to target depths of 3m including SPTs;
- 3 No combined groundwater and gas monitoring standpipes installed with window sample boreholes;
- 4 No California Bearing Ratio (CBR) tests;
- Suite of geotechnical classification and strength tests;
- 5 No soil sample suites for chemical analysis of CLEA metals, asbestos, speciated hydrocarbons, cyanide and phenols to further delineate soil contamination;
- 4 No ground gas and groundwater monitoring visits to satisfy planning requirements; and
- Combined Factual & Interpretative Geoenvironmental Report.

Four plate bearing tests were proposed but in agreement with the client these were not carried out to prevent damage to the operational car park. Alternatively, a supplementary phase of intrusive ground investigation was carried in January 2021 that comprised:

- 2 No rotary boreholes to target depths of circa 5.0m including SPTs to determine the nature/composition of the strata below 1.0m bgl.
- Update to the Combined Factual & Interpretative Geoenvironmental Report.

1.3 **Previous Reports**

The following Phase 1 Desk Study had been previously prepared for the site:

• Phase 1 Site Investigation & Preliminary Risk Assessment. Remada Ltd Report ref: 799.01.02, July 2021.

1.4 Limitations

The comments given in this report and the opinions expressed are based on the information reviewed and observations during site work. However, there may be conditions pertaining to the site that have not been disclosed by this assessment and therefore could not be taken into account.

2 SUMMARY OF PHASE 1 DESK STUDY

The Executive Summary and Conceptual Site Model presented within the Phase 1 Desk Study are reproduced below:

Site Setting

The site occupies a rectangular shaped plot of land, located within the north-west corner of Bulwark Industrial Estate, off Bulwark Road, and is situated approximately 1 km south of Chepstow Town Centre.

The site is currently occupied by the former Severn Bridge Club building and surrounding car park, and the adjacent Malvern Tyres. The southern and south-western site boundaries are delineated by wire mesh fencing, with part of the western boundary comprising wooden fencing. Hedgerows delineate part of the northern boundary. Metal fencing currently separates the Severn Bridge Club and Malvern Tyres.

Site History

The earliest available historic mapping of 1881 indicates the site to be occupied by a residential property 'Fairfield Lodge' with associated garden, woodland and fields. By 1901 the site was being referred to as Fairfield Farm. By 1921, the former field in the eastern margin of the site had been redeveloped by housing blocks of the wider Bulwark Village, which remained until their demolition between 1971 and 1977. The existing Severn Bridge Social Club was developed between 1955 and 1966.

Geology / Hydrogeology

Published geological maps record that the site is directly underlain by the Mercia Mudstone Group, designated as a Principal Aquifer.

Mining

The site is not located within an area which may be affected by coal mining activity.

Environmental Risk Assessment

The desk study has identified a number of on-site and off-site potential sources of contamination that would require further investigation. The following is recommended:

- Investigation of the lateral and vertical extent of made ground beneath the site;
- Collection of soil and groundwater samples from the areas identified above for contaminants of concern; and
- Ground gas monitoring.

Geotechnical Assessment

It is recommended that a ground investigation is undertaken to enable preliminary foundation design.

Potential Source Areas	Potential Contaminant of Concern	Pathways	Potential Receptor		Exposure Route (Human unless otherwise stated)	Potential Identified Linkage (unmitigated)	Findings of Ground investigation	Risk (Un- mitigated)	Proposed Remediation (Mitigation) Measures	Residual Risk Estimation
On-site Sources						No.	To be	Detential viels	(T.a. h.a.	(T.a. h.a.
General Made Ground		Disturbance due to construction plant		•	Direct Soil Ingestion	Yes	assessed (TBA)	Potential risk	(To be assessed (TBA)	(To be assessed (TBA)
Severn Bridge Club	Asbestos / Metals As. Be.	causing direct contact, dusts,		٠	Indoor Dust ingestion	Yes	As above	Potential risk	ТВА	TBA
<u>Off-site Sources</u>	Cd, Cu, Cr (VI), Cr (III) Hg, Ni,	vapours.	Occupants of the	•	Skin Contact with Soils	Yes	As above	Potential risk	ТВА	ТВА
Made Ground		Direct Contact with	development / building	•	Skin Contact with Dust	Yes	As above	Potential risk	ТВА	ТВА
Builders Yard	/PAH, PCBs	occupants of the proposed	fabric	•	Inhalation of Outdoor Dust	Yes	As above	Potential risk	TBA	ТВА
Tyre Depot	Se, Va, Zn, Boron, TPH Direct Contact with /PAH, PCBs occupants of the		•	Inhalation of Outdoor Vapours	Yes	As above	Potential risk	ТВА	ТВА	
Bus Depot		/ vapours / gases by occupants of	Adjacent residents	•	Inhalation of ground gas	Yes	As above	Potential risk	ТВА	ТВА
Electricity Sub-Station		development Permeation of	during construction	•	Inhalation of radon gas	Yes	Intermediate Probability	Potential Risk	Basic Radon Protection	Low
Tanks		water supply				Yes	Radon Area	Potential risk	Measures TBA	ТВА
Various works,		pipework		•	Inhalation of Indoor Vapours	res	As above	Potential risk	IDA	IDA
factories and				٠	Ingestion via	Yes	As above	Potential risk	TBA	ТВА
warehouses					permeated water supply pipework					
Residential premises				•	Inhalation of ground gas	Yes	As above	Potential risk	ТВА	ТВА
		Leachate	Principal Aquifers	•	Leaching to Principal Aquifers in Bedrock deposits	Yes	As above	Potential risk	ТВА	ТВА

Table 1: Outline Conceptual Site Model

Direct contact with subsurface soil and/or groundwater during redevelopment works are not assessed as part of the CSM. It is considered that risks to workers will be managed as part of any the redevelopment works at the site through the application of health and safety procedures, where required.

3 ENVIRONMENTAL & GEOTECHNICAL INVESTIGATION METHODOLOGY

3.1 Investigation Strategy

In accordance with Lidl Ground Investigation standard 04.2018, four (4 No). window sample holes were required beneath the proposed store footprint to a depth of 6m or refusal, and four (4 No) beneath the delivery bay, HGV access and car park. Four (4 No) CBR tests were conducted in the proposed car park. Four (4 No) ground gas monitoring visits were scheduled for the site to provide the minimum required by C665.

The investigation comprised the drilling of eight (8 No) window sample holes (WS1 – WS8) and execution of four (4 No) CBR tests at locations indicated on **Figure 2** between 30th November and 1st December 2020.

Due to the nature of the encountered ground conditions, Remada returned to site on Monday 4th January 2021 to undertake additional investigation. This comprised the drilling of two (2 No) rotary boreholes (BH101 and BH102) within the proposed building footprint at the locations indicated on **Figure 2**.

All exploratory holes were logged by a suitably qualified Geo-environmental Engineer in general accordance with the recommendations of BS5930:2015. Detailed descriptions, together with relevant comments, are given in the Exploratory Hole Logs.

3.2 Intrusive Investigation

3.2.1 Window Sample Holes

Four of the window samples were advanced to a target depth of 6m and four to a target depth of 3m. However, as SPT refusals were encountered at relatively shallow depths, all window sample holes were advanced only to depths of between 1.0m and 1.7m below ground level (bgl). Combined Groundwater and Ground Gas monitoring standpipes were installed in WS1, WS3 and WS4.

Standard Penetration Tests (SPTs) in the window samples were carried out at 1.0m intervals as recorded on the borehole logs to assess the relative density and consistency of soils.

SPTs were conducted in accordance with BS EN ISO 22476-3 and the recorded SPT N-values are summarised on the borehole logs.

3.2.2 Rotary Boreholes

Two rotary boreholes were advanced to a target depth of circa. 5.0m using a Commachio GEO205 drilling rig. Both boreholes were backfilled with bentonite upon completion and the asphalt surfacing reinstated.

Standard Penetration Tests (SPTs) in these rotary boreholes were carried out at 1.5m intervals as recorded on the borehole logs to assess the relative density and consistency of recovered soils/rock.

SPTs were conducted in accordance with BS EN ISO 22476-3 and the recorded SPT N-values are summarised on the borehole logs.

3.2.3 Dynamic Cone Penetrometer (DCP) Tests

The DCP tests were conducted in order to determine California Bearing Ratio (CBR) values for near surface soils. A known mass is dropped through a known distance to drive a cone into the ground. The penetration distance per blow is recorded in order to enable the CBR value to be calculated. The results of the DCP tests are presented in **Appendix A**.

3.3 Soil Sampling

3.3.1 Environmental

Made ground and natural soils were selected by visual and olfactory means for subsequent analysis. Samples for chemical laboratory testing purposes were collected in amber glass jars, amber glass vials and plastic tubs and retained in a cool box for transport to the laboratory.

3.3.2 Geotechnical

Geotechnical samples were collected at depths indicated on the trial pit and window sample logs with samples retrieved either from the excavator bucket of from within a sleeve line. The disturbed samples were placed in sealed and correctly labelled plastic tubs or bags as appropriate. All geotechnical samples were dispatched to the laboratory for testing with a completed chain of custody.

3.4 Gas and Groundwater Monitoring

3.4.1 Installations

Combined ground gas and groundwater monitoring standpipes were installed in three of the window sample boreholes. The standpipes consisted of high-density polyethylene (HDPE) pipe. A bentonite seal was made around the plain pipe and a clean gravel pack was placed around the slotted pipe. A summary of the installation construction is tabulated below:

Location and Depth	Internal Diameter Pipe	Response Zone (m bgl)	Targeted Strata
WS1 – 1.0m bgl	50mm HDPE	0.5 – 1.0	Natural Sand
WS3 – 1.0m bgl	50mm HDPE	0.5 – 1.0	Natural Sand & Sandy Clay
WS4 – 1.0m bgl	50mm HDPE	0.5 – 1.0	MADE GROUND & Natural CLAY

Table 2: Monitoring Well Installation Details

3.4.2 Monitoring

Ground gas monitoring was undertaken using Geotech GA5000 gas analyser for the parameters reported below. Groundwater levels were measured with a GeoSense OWP30 oil water interface probe.

Permanent ground gas monitoring involved the measurement of the following in the prescribed order:

- Pressure difference between the monitoring well and the atmosphere,
- Peak and steady flow rates of gas into or out of the monitoring well;
- Peak and steady concentrations of carbon dioxide, methane, oxygen (minimum and steady recorded), carbon monoxide, hydrogen sulphide; and
- Depth to groundwater.

In total four monitoring visits were undertaken between 10th December 2020 and 12th January 2021. The results are presented on **Table 3**.

3.5 Quality Assurance and Quality Control

All samples were submitted to a United Kingdom Accredited Laboratory (UKAS) under a completed chain of custody. The laboratory carried out its own QA/QC programme to ensure that the quality of the analytical data conformed to the appropriate test method protocols.

3.6 Laboratory Testing

3.6.1 Soil Chemical Analysis

Five (5 No) soil samples were scheduled for the analysis of asbestos, arsenic, barium, beryllium, cadmium, chromium (III & VI), copper, mercury, nickel, lead, selenium, zinc, fraction of organic carbon, Total Petroleum Hydrocarbons (TPHCWG), Polyaromatic Hydrocarbons (PAH), BTEX compounds (benzene, toluene, ethylbenzene and xylene) and phenols.

In addition, two (2 No) samples of bituminous surfacing were analysed for PAH compounds. One (1 No) granular soil sample of suspected limestone was analysed for calcium and magnesium only.

The results of laboratory chemical analyses are presented at Appendix B.

3.6.2 Geotechnical

Samples recovered from the boreholes were submitted to an accredited laboratory for the following analyses in general accordance with BS1377:1990:

- 5 No Natural Moisture Contents
- 5 No Plasticity Indices
- 5 No Particle Size Distribution tests
- 3 No Quick Undrained Shear Box Tests
- 4 No BRE SD1 suites; and
- 3 No. Point Load Test

The results of the geotechnical testing are presented at Appendix C.

4 GEOTECHNICAL & ENVIRONMENTAL INVESTIGATION FINDINGS

4.1 Ground Conditions

A brief description of the published geology is provided together with a summary of the ground conditions encountered during the intrusive investigation. Exploratory logs are presented at the end of the report.

4.1.1 Made Ground

Made Ground was encountered within all ten exploratory holes on-site (WS1 – WS8 and BH101 – 102) and was typically a thin veneer less that 1.0m thick. The maximum thickness of made ground of 1.55m was recorded in WS5 in the southern area of the site.

Asphalt surfacing was encountered within nine of the exploratory holes (all except WS6) and was recorded between 0.05m and 0.15m thick. A sub-base material comprising sandy gravel of mudstone and shale was identified underlying this surfacing within five of the boreholes (WS2, WS5, WS8, BH101 and BH102) but was only between 0.05m and 0.1m thick.

Within WS6 in the western area of the site, brown sand topsoil was encountered to a depth of 0.2m bgl. For the purpose of this assessment, topsoil is defined as the upper darker and more fertile layer of the soil profile, which is a product of natural chemical, physical, biological and environmental processes. This does not imply compliance with BS 3882:2015.

The made ground underlying the topsoil, asphalt surfacing and subbase was typically heterogeneous, comprising soft to firm locally sandy, silty and gravelly clay, with some localised deposits of gravelly sand (as in WS6). Gravel was generally angular to subangular, of brick fragments, coal, quartz, limestone and rare clinker.

4.1.2 Superficial Deposits

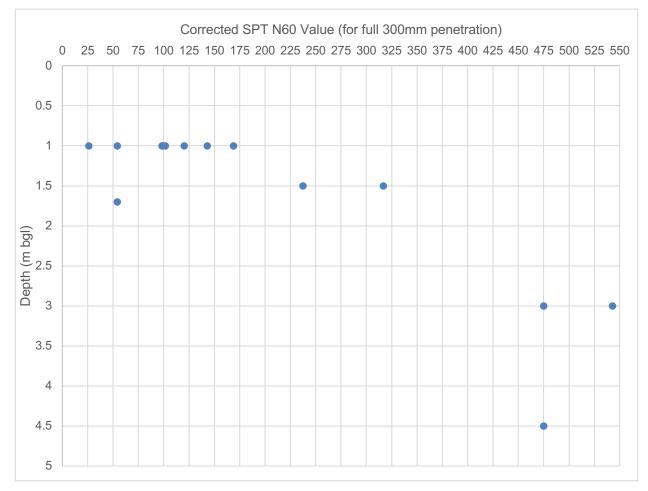
According to the published geology superficial deposits are not present beneath the site, although they are present in the local area. However, several of the exploratory holes encountered a material that has been interpreted as potentially superficial in origin.

The material was generally described as a soft to stiff brown locally gravelly clay, where the gravel comprised subangular limestone.

4.1.3 Bedrock

The published geology indicates the site is directly underlain by Mercia Mudstone Group bedrock, with limestone and dolostone geological units being located off-site to the north. During the window sampling on-site, all the eight boreholes refused within a light brown clayey sandy limestone gravel at depths of between 1.0m and 1.7m bgl. Due to the percussive window sampling method, the recovered material within the window sample liners was consequently analogous of a potential engineered fill material e.g., MOT Type subbase.

Subsequent rotary core drilling by Remada identified the site to be underlain by yellowish brown limestone bedrock, which was cored to a depth of 4.5m in two locations under the building footprint. The bedrock was recorded as being strong to very strong during field tests, as it required multiple blows of a geological hammer to fracture.


The limestone bedrock underlying the site is considered to be representative of the Gully Oolite Formation or Llanelli Formation units recorded to the north and north-east respectively.

4.2 In-situ Testing

In-situ SPTs were undertaken to assist with the interpretation of strata encountered. The SPT N-values have been corrected based on the Energy Ratio of 65% for the SPT hammer on the window sampling rig and 76% on the rotary rig. The SPT Hammer Energy Test Reports, undertaken in accordance with BS EN ISO 22476-3:2005 are included in **Appendix D**. The results of corrected N-values versus depth are plotted in the graph below:

Graph 1: Plot of Corrected SPT N-Values Versus Depth

4.3 Soil Observations

Made Ground was recovered at all locations as heterogeneous cohesive and granular materials, containing a variety of man-made materials including brick, ash and clinker.

There were no visible indicators of contamination including asbestos within the sampled soils.

4.4 Groundwater Observations

No groundwater was encountered within any of the exploratory during the intrusive investigation.

4.5 Chemical Analysis

Results of the soil chemical analysis are presented in **Table 4** at the end of the report and full laboratory certificates are presented in **Appendix B**. Results of the chemical analyses are summarised as follows.

The average FOC and pH were 0.04 and 9.2 respectively. Chrysotile asbestos cement was identified in the sample from WS8 at 0.1 - 0.6m bgl, recording a total concentration of 0.059%. Detectable concentrations of metals were identified, although these are generally within the range that would typically be expected for made ground.

Concentrations of TPH were detected above method detection limit (MDL) in three of the samples analysed (from WS2, WS6 and WS8). The hydrocarbons were generally heavy end hydrocarbons within the range C16 to C35 carbon range. There was no visual or olfactory evidence of contamination. No detectable concentrations of BTEX compounds were identified within the five samples analysed.

Concentrations of PAHs were generally low, with the maximum concentration (excluding bituminous surfacing sample) of 170 mg/kg was encountered in WS6 at 0.2 – 0.5m.

A crushed sample of the calcareous gravel from within WS1 at 0.55 – 0.95m contained 650 mg/l of calcium and only 36mg/l of extractable magnesium.

4.6 Geotechnical Testing

Results of the geotechnical testing are summarised as follows and full laboratory certificates are presented in **Appendix C**.

Laboratory test results produced:

Five plasticity tests were undertaken on the recovered shallow cohesive strata from the window sample boreholes. The tests indicated that in four of the samples the natural strata to be of low plasticity, with plasticity indices of between 13% and 16%. The sample from WS8 between 0.9m - 1.1m was recorded as being non-plastic.

The PSD tests revealed the following:

- Natural deposits in WS1 at 0.55 0.95m comprised very sandy very clayey GRAVEL.
- Natural deposits in WS2 at 0.85 1.10m comprised very sandy very clayey GRAVEL.
- Natural deposits in WS4 at 1.10 1.40m comprised slightly gravelly very sandy and silty CLAY.
- Natural deposits in WS5 at 1.55 2.0m comprised very gravelly sandy CLAY.
- Made ground deposits in WS6 at 0.20 0.6m comprised slightly silty/clayey very sandy GRAVEL.

The consolidated drained peak shear box tests revealed the following:

- WS1 at 0.55 0.95m depth a peak angle of shearing resistance of 33° and effective cohesion of 10kPa was calculated.
- WS2 at 0.85 1.10m depth a peak angle of shearing resistance of 34° and effective cohesion of 7kPa was calculated.
- WS3 at 0.6 1.20m depth a peak angle of shearing resistance of 30° and effective cohesion of 8kPa was calculated.

The water soluble sulphate contents varied from <0.01 to 0.11 g/l in all four soil samples analysed with pH varying from 8.1 to 8.7. The total sulphur content varied from 0.022 to 0.13% and acid soluble sulphate varied from 0.029 to 0.079%.

Point load testing undertaken on three samples of limestone bedrock revealed the following:

• BH101 at 4.15m recorded a point load index $(I_{s(50)})$ of 0.44MPa in perpendicular orientation.

- BH102 at 1.5m recorded a point load index of $(I_{s(50)})$ of 1.0MPa in perpendicular orientation.
- BH102 at 2.66m recorded a point load index of $(I_{s(50)})$ of 0.81MPa in perpendicular orientation.

4.7 Ground Gas Monitoring Results

Ground gas monitoring was undertaken on 10th and 16th December 2020 and 7th and 12th January 2021, at the standpipes installed within WS1, WS3 and WS4. Results are presented in **Table 3** and summarised below:

- Methane concentrations were recorded below the instrument detection limit of <0.1 % v/v in all the monitoring wells on all four occasions;
- Peak carbon dioxide concentrations were recorded at a maximum of 0.7% v/v in WS1 during the first monitoring visit. The maximum steady state concentration of carbon dioxide was 0.5% v/v and recorded in the same standpipe during the first visit.
- Oxygen concentrations were recorded at a minimum concentration of 14.4 % v/v in WS4 on 7th January 2021;
- Ground gas flow rates were recorded at a maximum of 1.0 litres per hour (l/hr) within all three standpipes over the course of the monitoring programme.
- No groundwater was detected within any of the standpipes over the course of the monitoring programme.
- Atmospheric pressure at the time of sampling varied between a high of 1019 millibar (mbar) on 12th January 2021 and a low of 993 mbar on 10th December 2020. The monitoring visits were undertaken during periods of rising and falling pressure trends over the preceding 48 hours.

5 GENERIC QUANTITATIVE RISK ASSESSMENT

5.1 Human Health Risk Assessment

In order to provide an up to date assessment of the risks to human health, Remada has adopted the most recent Generic Assessment Criteria (GAC) published by LQM/CIEH (S4ULs) and CL:AIRE/EIC/AGS for the assessment of potential risks to human health. The derivation of GAC, methodology, input parameters and technical guidance (CLEA) may be obtained upon request.

The proposed site layout retail store and car park is presented and **Figure 3.** Default parameters have been adopted for sandy loam of pH 7 and commercial land use. FOC ranged from 0.0013 to 0.063 giving a Soil Organic Matter (SOM) content range of between 0.2 to 10.8% with an average result of 7.6%. In order to present a conservative assessment, the SOM content of 6% has been adopted for the assessment.

The depth to potential sources of contamination for indoor air pathways has been assumed to be 0.5m below building foundation level. The source has been conservatively assumed to be at ground level for outdoor air and direct contact pathways.

For commercial land use the CLEA version 1.06 critical receptor is conservatively modelled as a female working adult with an exposure duration of 49 years. In accordance with the default parameters it was assumed that employees spend most of their time indoors and that 80% of outdoor area is covered by hardstanding. As such, the potential exposure pathways have been assumed to be:

- Direct Soil and Indoor Dust Ingestion;
- Skin contact with soils and dusts;
- Inhalation of indoor and outdoor dusts and vapours.

Where GAC values for individual TPH fractions are not exceeded, the potential additive effect has been assessed by calculating overall TPH hazard index for each sample.

5.2 Comparison of Soil Analysis Results with Human Health GAC

A comparison of soil chemical analysis with GAC is presented as Table 4.

TPH, PAH & BTEX

Dibenz(ah)anthracene was identified in the made ground sample from WS6 at 0.2 – 0.5m bgl at a concentration of 3.8mg/kg, which marginally exceeded the human health GAC of 3.6mg/kg protective of on-site workers. The 95 percentile value for Dibenz(ah)anthracene is 3.47 and less the applicable GAC of 3.6 mg/kg.

Metals & Inorganics Excluding Asbestos

None of the analytes tested were detected at concentrations that exceeded the human health GAC protective of on-site workers.

<u>Asbestos</u>

Chrysotile asbestos cement was identified in the sample from WS8 at 0.1 - 0.6m bgl, recording a total concentration of 0.059%. The sample was obtained from made ground comprising brown sandy clayey gravel with brick and coal fragments.

5.3 Controlled Waters Risk Assessment

The site is not located within a designated Groundwater Source Protection Zone. The intrusive investigation has revealed that the site is directly underlain by limestone bedrock, rather than the Mercia Mudstone Group bedrock (a Principal Aquifer) indicated on the geological mapping.

The results of the soil chemical analysis undertaken has identified that concentrations of metals and inorganic contaminants are within the range of typical made ground. Detectable concentrations of TPH and PAHs were encountered in some samples. However, the contaminants identified are of low solubility and mobility and as such are unlikely to present a risk to groundwater beneath the site. In addition, it should be noted that the site will be predominantly covered with the building and areas of hardstanding. Therefore, the risk of leaching of contaminants as a result of infiltration of groundwater is likely to be limited. Therefore, the risk to groundwater from contaminants within the made ground at the site is considered to be low and does not warrant further consideration.

5.4 Ground Gas Assessment

In order to understand the gassing regime at the site, a Characteristic Situation (as defined in CIRIA C665 and BS8576:2013) is determined for the site. CIRIA C665 and BS8576 provides definitions for each Characteristic Situation based on Gas Screening Values (GSV) which are calculated as follows:

• GSV = Gas Concentration (% v/v) x Measured Borehole Flow Rate (I/hr)

BS8576 makes a distinction between the GSV and the Hazardous Gas Flow Rate (Q_{hg}) which is also calculated using the above calculation. BS8576 states that Q_{hg} is calculated for each individual borehole for each monitoring visit, whereas the GSV is taken as the representative value for the site or site zone.

As a worst-case assessment, the GSV for the site is therefore taken as the maximum steady state carbon dioxide/methane concentration recorded in the boreholes which is multiplied by the maximum flow rate recorded during the same monitoring event.

- Methane GSV = 0.1 % x 1.0 l/hr = 0.001 l/hr (methane concentration taken as equal to the instrument detection limit of 0.1%).
- Carbon Dioxide GSV = 0.5% x 1.0 l/hr = 0.005 l/hr

The calculated GSV for methane and carbon dioxide places the site into Characteristic Situation 1. BS8485 states that for Characteristic Situation 1 the methane concentration would typically be less than 1% and carbon dioxide less than 5% and that if concentrations are above these limits then consideration should be given to placing the site into Characteristic Situation 2. As the concentrations of methane and carbon dioxide were both within these typical limits it is considered that the Characteristic Situation 1 classification is appropriate for the site. Therefore, gas protection measures are not deemed necessary for the proposed development.

Whilst ground gas protection measures are not deemed necessary, the site is located within an Intermediate Probability Radon Area and as such, basic radon protection measures are required. A radon / ground gas membrane will need to be installed and verified in accordance with CIRIA C735 Good Practice on the Testing & Verification of Protection Systems for Buildings Against Hazardous Ground Gases (2014) which sets out industry good practice.

5.5 Revised Conceptual Site Model

A revised Conceptual Site Model is presented as **Table 5** below.

5.6 Waste Classification

In general, the results of the chemical analysis indicates that the material would be classified as nonhazardous waste. While Waste Acceptance Criteria (WAC) analysis has not been undertaken, the assessment has included determination of the fraction of organic carbon (foc) which can be converted to TOC by multiplying the result by 100. A TOC limit of 3% is placed on waste destined for disposal in an inert landfill. As four of the five samples selected for analysis exceeded this limit it is considered that the waste should be classified as non-hazardous. WAC testing is not required for disposal of non-hazardous waste to landfill.

Two samples of bituminous surfacing was analysed for concentrations of PAH compounds. The purpose of this analysis was to determine if the sample contained coal tar as this would result in a hazardous waste classification. The Environment Agency Technical Guidance document WM3 states that *"where the concentration of benzo(a)pyrene is at or above 50ppm (mg/kg) in the black top alone (excluding other material) then the amount of coal tar should be considered to be sufficient (0.1% or more) for the material to be hazardous".*

The results indicated that while the concentrations of PAHs were very low (total PAH concentration <2.0 mg/kg), whilst the concentration of benzo(a)pyrene of <0.1mg/kg was below the 50mg/kg limit defined in WM3. Therefore, the bituminous surfacing represented by this sample would be classified as non-hazardous waste and assigned the List of Wastes code 17 03 02 for bituminous mixtures other than those mentioned in 17 03 01.

5.7 Health & Safety Considerations

To ensure direct exposure of construction workers involved in the site redevelopment to any impacted contaminated shallow soils is minimised, the guidance stated in HSG 66 "Protection of Workers and the General Public During Redevelopment of Contaminated Land" should be followed.

Potential Source Areas	Potential Contaminant of Concern	Pathways	Potential Receptor		Exposure Route (Human unless otherwise stated)	Potential Identified Linkage (unmitigated)	Findings of Ground investigation	Risk (Un- mitigated)	Proposed Remediation (Mitigation) Measures	Residual Risk Estimation
On-site Sources				•	Direct Soil Ingestion	Yes	< GAC	Negligible	Negligible	Negligible
General Made Ground		Disturbance due to			Indoor Dust ingestion	Yes	< GAC	Negligible	As above	Negligible
	Asbestos /	construction plant causing direct		•	Indoor Dust Ingestion	163		Negligible		Negligible
Severn Bridge Club	Metals As, Be,	contact, dusts,		•	Skin Contact with	Yes	< GAC	Negligible	As above	Negligible
<u>Off-site Sources</u>	Cd, Cu, Cr (VI), Cr (III) Hg, Ni,	vapours.	Occupants of the		Soils	Yes	< GAC	Negligible	As above	Nagligibla
Made Ground	Se, Va, Zn,		development	•	Skin Contact with Dust Inhalation of Outdoor	Yes	Made Ground	TBC	Asbestos Risk	Negligible TBC
Builders Yard	Boron, TPH /PAH, PCBs	Direct Contact with occupants of the proposed development	/ building fabric		Dust		0.0059% chrysotile @ WS8		Assessment for excavations / disturbance	
Tyre Depot Bus Depot		Inhalation of fibres / vapours / gases		•	Inhalation of Outdoor Vapours	Yes	< GAC	Negligible	As above	Negligible
Electricity Sub-Station		by occupants of proposed development	Adjacent residents during	•	Inhalation of ground gas	Yes	< GAC	Negligible	As above	Negligible
Tanks		Permeation of water supply	construction	•	Inhalation of radon gas	Yes	Intermediate Probability Radon Area	Potential Risk	Basic Radon Protection Measures	Negligible
Various works, factories and		pipework		•	Inhalation of Indoor Vapours	Yes	< GAC	Negligible	Negligible	Negligible
warehouses				•	Ingestion via permeated water supply pipework	Yes	< GAC	Negligible	Negligible	Negligible
Residential premises				•	Inhalation of ground gas	Yes	<gsv< td=""><td>Negligible</td><td>Negligible</td><td>Negligible</td></gsv<>	Negligible	Negligible	Negligible
		Leachate	Principal Aquifers	•	Leaching to Principal Aquifers in Bedrock deposits	Yes	< GAC	Negligible	Negligible	Negligible

Table 5: Refined Conceptual Site Model

Direct contact with subsurface soil and/or groundwater during redevelopment works are not assessed as part of the CSM. It is considered that risks to workers will be managed as part of any the redevelopment works at the site through the application of health and safety procedures, where required.

6 GEOTECHNICAL SITE ASSESSMENT:

6.1 Geotechnical Considerations

The proposed layout at **Figure 3** indicates that the store footprint will occupy the existing car park in the central and eastern zones of the site. It was anticipated that the site would directly underlain by Mercia Mudstone however the window sample rig proved N values of greater than 50 were proven at 1.0 to 1.7m bgl. Consequently, two rotary core holes were bored at two locations within the proposed store footprint and recovered a yellowish-brown limestone bedrock to a depth of 4.5m.

Representative core samples were recovered from the shallow bedrock and produced point load tests $I_{s(50)}$ values of between 0.44 and 1.0MPa. The average Is(50) value is 0.75MPa, which compares with published values for carbonate siltstone/sandstone in Tomlinson (2001).

Details of the proposed permanent and variable design loads (actions) are not currently known although an indicative column load of 400kN has been provided.

6.2 Foundations

Either pad foundation or stiffened raft down stands bearing directly on the limestone of N > 50 and encountered at circa. one metre depth is considered a suitable foundation solution. Removal and recompaction of the existing shallow made ground as observed outside the existing footprint may provide a suitable formation for a ground bearing floor slab if correctly engineered. In the event that deeper made ground is encountered following demolition of the existing building, proposed foundations should be deepened as necessary to bear on the underlying bedrock.

Finished floor levels are not known at the time of writing this report and it is assumed that these will be close to existing levels. It is important that any voids resulting from the removal of existing foundations are compacted to an appropriate engineering standard prior to the construction of the raft foundation or ground bearing floor slab.

6.3 Imported Fill

Any imported material should comply with an earthworks specification to be prepared by the engineer and not contain concentrations of contaminants at greater than the Generic Assessment Criteria (GAC) presented in **Table 3**.

6.4 Excavations and Temporary Works

Shallow limestone bedrock was encountered underlying the site, which will require a 360 tracked excavator (or similar) to penetrate into.

No groundwater was encountered during the intrusive works, or during the subsequent monitoring programme.

6.5 Existing Car Park Surfacing

Bituminous hardstanding was encountered at ground level in nine of the exploratory holes on-site; ranging in thickness between 0.05m and 0.15m.

Lidl standard detail LD(14)-SP-04 Rev 1 provides separate details for 3-layer HGV access roads and 2layer car park areas. The overall bituminous construction is significantly less than the 200mm required by Lidl for a HGV route, and in several instances is less than the 90mm required for car parking only.

Due to the demolition of the existing building on-site and the associated reprofiling of the car parking onsite, the existing car park surfacing is likely to be removed as part of the site's redevelopment.

6.6 **Protection of Buried Concrete**

In accordance with BRE SD1 for buried concrete in a brownfield site with mobile groundwater, analyse of selected samples for water soluble sulphate returned values of up to 0.11 g/l and pH >8.1. Therefore a Design Sulphate Class DS-1 is considered appropriate for buried concrete and an ACEC Class of AC-1 is considered appropriate for the location.

6.7 General Construction Advice

All formations should be cleaned, and subsequently inspected, by a suitably qualified engineer prior to placing concrete. Should any soft, compressible or otherwise unsuitable materials be encountered they should be removed and replaced by blinding concrete.

Foundation concrete, or alternatively, a blinding layer of concrete, should be placed immediately after excavation and inspection in order to protect the formation against softening and disturbance.

Generally, all formations should be placed wholly within the same material type, unless specific geotechnical inspection and assessment have been undertaken.

Where applicable ground beneath the proposed building footprint and potentially car parking may require to be stripped to reveal localised areas of made ground and structures. Excavations should be backfilled with suitably re-compacted materials to achieve formation level.

During foundation excavation works arisings should be constantly monitored for the presence of contamination.

7 CONCLUSIONS & RECOMENDATIONS

7.1 Conclusions

The following conclusions have been made based on the findings of this investigation.

7.1.1 Phase 2 Site Investigation

The earliest available historic mapping of 1881 indicates the site to be occupied by a residential property 'Fairfield Lodge' with associated garden, woodland and fields. By 1901 the site was being referred to as Fairfield Farm. By 1921, the former field in the eastern margin of the site had been redeveloped by housing blocks of the wider Bulwark Village, which remained until their demolition between 1971 and 1977. The existing Severn Bridge Social Club was developed between 1955 and 1966.

The published geology indicates the site is directly underlain by Mercia Mudstone Group bedrock, with limestone and dolostone geological units being located off-site to the north. During the window sampling on-site, all the eight boreholes refused within a light brown clayey sandy limestone gravel at depths of between 1.0m and 1.7m bgl. Chemical analysis of the gravel indicated it to be depleted in magnesium in comparison to calcium, indicating the rock to be limestone rather than dolostone.

Subsequent rotary drilling by Remada identified the site to be underlain by yellowish brown limestone bedrock, which was cored to a depth of 4.5m in two locations under the building footprint. The bedrock was recorded as being strong to very strong during field tests, as it required multiple blows of a geological hammer to fracture. The limestone bedrock underlying the site is considered to be representative of the Gully Oolite Formation or Llanelli Formation units recorded to the north and north-east respectively.

7.1.2 Human Health Risk Assessment Retail Zone

The results of soil chemical analysis were compared to Human Health Generic Assessment Criteria for commercial land use. Dibenz(ah)anthracene was identified in the made ground sample from WS6 at 0.2 - 0.5m bgl at a concentration of 3.8mg/kg however the 95-percentile value is less the applicable GAC of 3.6 mg/kg.

Chrysotile asbestos cement was identified in the sample from WS8 at 0.1 – 0.6m bgl, recording a total concentration of 0.059%.

7.1.3 Water Resources Risk Assessment

The results of the soil chemical analysis undertaken has identified that concentrations of metals and inorganic contaminants are within the range of typical made ground. Detectable concentrations of TPH and PAHs were encountered in some samples. However, the contaminants identified are of low solubility and mobility and as such are unlikely to present a risk to groundwater beneath the site. In addition, it should be noted that the site will be predominantly covered with the building and areas of hardstanding. Therefore, the risk of leaching of contaminants as a result of infiltration of groundwater is likely to be limited. Therefore, the risk to groundwater from contaminants within the made ground at the site is considered to be low and does not warrant further consideration.

7.1.4 Waste Classification

In general, the results of the chemical analysis indicates that the material would be classified as nonhazardous waste. While Waste Acceptance Criteria (WAC) analysis has not been undertaken, four of the five samples selected for analysis exceeded this TOC limit for disposal in an inert landfill. Therefore, it is considered that the waste should be classified as non-hazardous. WAC testing is not required for disposal of non-hazardous waste to landfill.

Two samples of bituminous surfacing were analysed for concentrations of PAH compounds. The results indicated that while the concentrations of PAHs were very low (total PAH concentration <2.0 mg/kg), whilst

the concentration of benzo(a)pyrene of <0.1mg/kg was below the 50mg/kg limit defined in WM3. Therefore, the bituminous surfacing represented by this sample would be classified as non-hazardous waste and assigned the List of Wastes code 17 03 02 for bituminous mixtures other than those mentioned in 17 03 01.

7.1.5 Geotechnical Considerations

It was anticipated that the site would directly underlain by Mercia Mudstone however the window sample rig proved N values of greater than 50 were proven at 1.0 to 1.7m bgl. Consequently, two rotary core holes were bored at two locations within the proposed store footprint and recovered a yellowish-brown limestone bedrock to a depth of 4.5m. Point load testing of recovered samples from the shallow bedrock corresponded with published values for carbonate siltstone/sandstone.

7.2 Recommendations

Either pad foundation or stiffened raft down stands bearing directly on the limestone of N > 50 and encountered at circa. one metre depth is considered a suitable foundation solution. Removal and recompaction of the existing shallow made ground as observed outside the existing footprint may provide a suitable formation for a ground bearing floor slab if correctly engineered. In the event that deeper made ground is encountered following demolition of the existing building, proposed foundations should be deepened as necessary to bear on the underlying bedrock.

Finished floor levels are not known at the time of writing this report and it is assumed that these will be close to existing levels. It is important that any voids resulting from the removal of existing foundations are compacted to an appropriate engineering standard prior to the construction of the raft foundation or ground bearing floor slab.

A Design Sulphate Class DS-1 is considered appropriate for buried concrete and an ACEC Class of AC-1 is considered appropriate for the location.

Shallow limestone bedrock was encountered underlying the site, which will require a 360 tracked excavator (or similar) to penetrate into.

Due to the identification of chrysotile asbestos cement at a concentration of 0.059% in made ground at WS8 it is recommended that an asbestos risk assessment is undertaken prior to the commencement of redevelopment works.

7.3 Ground Gas

The results of four rounds of gas monitoring visits placed the site into Characteristic Situation 1 and therefore ground gas protection measures will not be required within the proposed buildings.

The site is located within an Intermediate Probability Radon Area and as such, basic radon protection measures are required. A radon / ground gas membrane will need to be installed and verified in accordance with CIRIA C735 Good Practice on the Testing & Verification of Protection Systems for Buildings Against Hazardous Ground Gases (2014) which sets out industry good practice.

REFERENCES & GUIDANCE

AGS, Guidance on the Waste Classification for Soils – A Practitioners' Guide 2019.

Barnes, G. 2010, Soil Mechanics Principles and Practice. 3rd Edition.

BRE, Special Digest 1:2005 (3rd Edition), Concrete in Aggressive Ground. 2005.

BS 10175:2011+A1:2013, Investigation of potentially contaminated sites: Code of practice.

BS 1377:1999. Methods of test for soils for civil engineering purposes.

BS 5930:2015, Code of practice for site investigations.

BS 8485:2015, Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings.

BS 8576:2013, Guidance on investigations for ground gas – Permanent gases and Volatile Organic Compounds (VOCs).

BS EN ISO 22476-3:2005, Geotechnical investigation and testing: Field testing - Standard penetration test.

CIRIA, C504, Engineering in glacial tills, 1999.

CIRIA, C665, Assessing risks posed by hazardous ground gases to buildings, 2007.

CIRIA, C682, The VOCs Handbook: Investigating, assessing and managing risks from inhalation of VOCs at land affected by contamination, 2009.

CIRIA, C716, Remediating and mitigating risks from volatile organic compound (VOC) vapours from land affected by contamination, 2012.

CIRIA C733, Asbestos in Soil and Made Ground: A Guide to Understanding & Managing Risks.

CL:AIRE/EIC/AGS, The Soil Generic Assessment Criteria for Human Health Risk Assessment, 2009.

CL:AIRE, SP1010, Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination -Final Project Report. 2013.

CL:AIRE, The Definition of Waste: Development Industry Code of Practice Version 2

DEFRA, Circular 01/2006, Contaminated Land Environmental Protection Act 1990, Part 2A. 2006.

DEFRA, SP1010, Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination – Policy Companion Document. March 2014.

Environment Agency, Model Procedures for the Management of Land Contamination, CLR 11, 2004.

Environment Agency, Verification of Remediation of Land Contamination Science Report – NC/00/38/SR

Environment Agency, Waste Classification, Guidance on the classification and assessment of waste (1st Edition V1.1) Technical Guidance WM3.

Health & Safety Executive, HSG 66, Protection of Workers and the General Public During Redevelopment of Contaminated Land. 1991.

Highways Agency, IAN 73/06 Rev 1, Design of Pavement Foundations, 2009.

Land Contamination Risk Management www.gov.uk 08.10.2020.

LCM/CIEH, The LQM/CIEH S4ULs for Human Health Risk Assessment. Land Quality Press, S4UL3146, 2015.

NHBC Standards, 2019.

Tomlinson, M.J., 2001, Foundation Design and Construction, 7th Edition.

The Water Framework Directive (Standards and Classification) Directions (England and Wales) 2015

The Definition of Waste: Development Industry Code of Practice, CL:AIRE 2011.

Guidance on the classification and assessment of waste (1st Edition v1.1) Technical Guidance WM3 2018.

STUDY LIMITATIONS

IMPORTANT. This section should be read before reliance is placed on any of the information, opinions, advice, recommendations or conclusions contained in this report.

1. This report has been prepared by Remada, Ltd with all reasonable skill, care and diligence within the terms of the Appointment and with the resources and manpower agreed with (the 'Client'). Remada does not accept responsibility for any matters outside the agreed scope.

2. This report has been prepared for the sole benefit of the Client unless agreed otherwise in writing.

3. Unless stated otherwise, no consultations with authorities or funders or other interested third parties have been carried out. Remada is unable to give categorical assurance that the findings will be accepted by these third parties as such bodies may have published, more stringent objectives. Further work may be required by these parties.

4. All work carried out in preparing this report has used, and is based on, Remada' professional knowledge and understanding of current relevant legislation. Changes in legislation or regulatory guidance may cause the opinion or advice contained in this report to become inappropriate or incorrect. In giving opinions and advice pending changes in legislation, of which Remada is aware, have been considered. Following delivery of the report Remada has no obligation to advise the Client or any other party of such changes or their repercussions.

5. This report is only valid when used in its entirety. Any information or advice included in the report should not be relied upon until considered in the context of the whole report.

6. Whilst this report and the opinions made are to the best of Remada' belief, Remada cannot guarantee the accuracy or completeness of any information provided by third parties.

7. This report has been prepared based on the information reasonably available during the project programme. All information relevant to the scope may not have received.

8. This report refers, within the limitations stated, to the condition of the site at the time of the inspections. No warranty is given as to the possibility of changes in the condition of the site since the time of the investigation.

9. The content of this report represents the professional opinion of experienced environmental consultants. Remada does not provide specialist legal or other professional advice. The advice of other professionals may be required.

10. Where intrusive investigation techniques have been employed they have been designed to provide a reasonable level of assurance on the conditions. Given the discrete nature of sampling, no investigation technique is capable of identifying all conditions present in all areas. In some cases the investigation is further limited by site operations, underground obstructions and above ground structures. Unless otherwise stated, areas beyond the boundary of the site have not been investigated.

11. If below ground intrusive investigations have been conducted as part of the scope, service tracing for safe location of exploratory holes has been carried out. The location of underground services shown on any drawing in this report has been determined by visual observations and electromagnetic techniques. No guarantee can be given that all services have been identified. Additional services, structures or other below ground obstructions, not indicated on the drawing, may be present on site.

12. Unless otherwise stated the report provides no comment on the nature of building materials, operational integrity of the facility or on any regulatory compliance issues.

13. Unless otherwise stated, samples from the site (soil, groundwater, building fabric or other samples) have NOT been analysed or assessed for waste classification purposes.

TABLES

Table 3: Gas Groundwater Monitoring Data

			GAS &	GROL	JNDWA	TER	ΙΟΝΙΤΟ	ORING I	DATA			-							Remada
SITE		Bulwark Roa	ad, Chep	stow, NP	16 5JN														
PROJECT No.		GA 5000 G501261 Falling			Atmospheric	& Gro	und Cone	ditions											
							Atmospl	heric Pres	sure Var	iations Dur	ing Visit					Ground St	urface Cond	itions	
Carried Out b	y:	Idris Shafqa	it						003mb								Wet		
Date:		10.12.2020																	
Instrument Details	c			Atmospheric Pressure Trend Over Previous 48hrs Falling								Weather Conditions Cold, windy, cloudy, light rain							
Well No.			CH4	(% v/v)		CO2	(% v/v)	02 (%	ών/ν)		Flow Rate	Relative Pressure	PID	(ppm)	Atmospheric	Water Level	Water Level	Depth of	Comments
	(m AOD)	(mm)	Peak	Steady	LEL (%)	Peak	Steady	Minimum	Steady	(secs)^	(l/hr)	(Pa)	Peak	Steady	Pressure (mb)	(m bgl)	(m AoD)	Pipe (m bgl)	
WS1		50	0.0	0.0	0.0	0.7	0.5	19.5	19.8	60	0.9	-0.59	-	-	993	DRY	-	1.000	
WS3		50	0.0	0.0	0.0	0.1	0.1	20.6	20.6	60	0.8	-0.49	-	-	993	DRY	-	1.000	
WS4		50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Not Accessible

GL = Ground Level

GL = Ground Level

GL = Ground Level

Notes: NR = Not Recorded ^ For measurement of gas concentrations > = Above LEL WST = Water Sample Taken

			GAS &	GROL	JNDWA	TER	ΙΟΝΙΤΟ	DRING I	DATA										Remade				
SITE		Bulwark Roa	ad, Chep	stow, NP	16 5JN																		
ROJECT No.		799.02										Atmospheric	c & Gro	und Cond	litions								
							Atmosph	heric Pres	sure Var	iations Dur	ing Visit					Ground S	urface Cond	itions					
Carried Out by					994mb								Wet										
Date:	16.12.2020					994mb										Wet							
strumont					Atmospheric Pressure Trend Over Previous 48hrs								Weather Conditions										
Details	C	GA 5000 G50	1261			Rising							Cold, windy, light rain										
Well No.	Cover Height		Well Diameter				CH₄ (% v/v)	CH₄ Steady	CO2	(% v/v)	O ₂ (*	(% v/v)	(secs)^	Flow Rate		PID	(ppm)	Atmospheric	Water Level	Water Level	Depth of	Comments
	(m AOD)	(mm)	Peak	Steady	LEL (%)	Peak	Steady	Minimum	Steady	(secs)^	(l/hr)	(Pa)	Peak	Steady	Pressure (mb)	(m bgl)	(m AoD)	Pipe (m bgl)					
WS1		50	0.0	0.0	0.0	0.4	0.3	17.0	17.1	60	0.8	0.52	-	-	994	DRY	-	1.000					
WS3		50	0.0	0.0	0.0	0.2	0.0	20.0	20.4	60	0.7	0.46	-	-	994	DRY	-	1.000					
WS4		50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Not Accessible				

Notes: NR = Not Recorded ^ For measurement of gas concentrations > = Above LEL WST = Water Sample Taken

GAS & GROUNDWATER MONITORING DATA Remada SITE Bulwark Road, Chepstow, NP16 5JN PROJECT No. 799.02 Atmospheric & Ground Conditions Atmospheric Pressure Variations During Visit Ground Surface Conditions Carried Out by: Idris Shafqat 1011mb Dry Date: 07.01.2020 Atmospheric Pressure Variations During Visit Weather Conditions Instrument Details GA 5000 G501261 Falling Cloudy, cold, windy Well N Duration (secs)^ low Rat (l/hr) Vater Lev (m bgl) Water Leve (m AoD) ll Diam (mm) ive Pro (Pa) Atmospheric Pressure (mb) Cover Heigh (m AOD) Depth of Pipe (m bgl) LEL (%) Steady Stead Stead Poak Poak WS1 0.0 17.6 60 0.9 -0.59 1011 DRY 1.000 50 0.0 0.0 0.2 0.0 17.3 -WS3 50 0.0 0.0 0.0 0.6 0.0 17.5 17.8 60 1.0 -0.51 1011 DRY 1.000 WS4 50 0.0 0.0 0.0 0.6 0.3 14.4 14.6 60 1.0 -0.54 1011 DRY 1.000

Notes: NR = Not Recorded ^ For measurement of gas concentrations > = Above LEL WST = Water Sample Taken

GAS & GROUNDWATER MONITORING DATA Remada Bulwark Road, Chepstow, NP16 5JN 799.02 SITE PROJECT No. Atmospheric & Ground Conditions Atmospheric Pressure Variations During Visit Ground Surface Conditions Idris Shafqat Carried Out by 1019mb Wet ate Atmospheric Pressure Trend Over Previous 48hrs Weather Conditions Instrument Details GA 5000 G501261 Rising Light rain, cloudy, cold, windy Well No Duration (secs)^ O₂ (% v/v) Atmosp ell Diame CH4 (% v/v) CO₂ (% v/v) low Rate (I/hr) lative Pre (Pa) PID (ppm) Water Level (m bgl) Water Level (m AoD) Depth of Pipe (m Comments Cover Height (m AOD) H₄Stead LEL (%) Steady Steady Peak Steady Pe Steady Pea 0.0 0.0 17.3 WS1 50 0.0 0.0 0.0 19.0 60 1.0 -0.45 1019 DRY 1.000 DRY WS3 50 0.0 0.0 0.0 0.3 0.0 15.9 17.2 60 0.9 -0.32 1019 1.000 -WS4 50 1.000 Not Accesible ------Notes: NR = Not Recorded ^ For measurement of gas concentrations > = Above LEL WST = Water Sample Taken GL = Ground Level

Table 2: Gas and Groundwater Monitoring Data

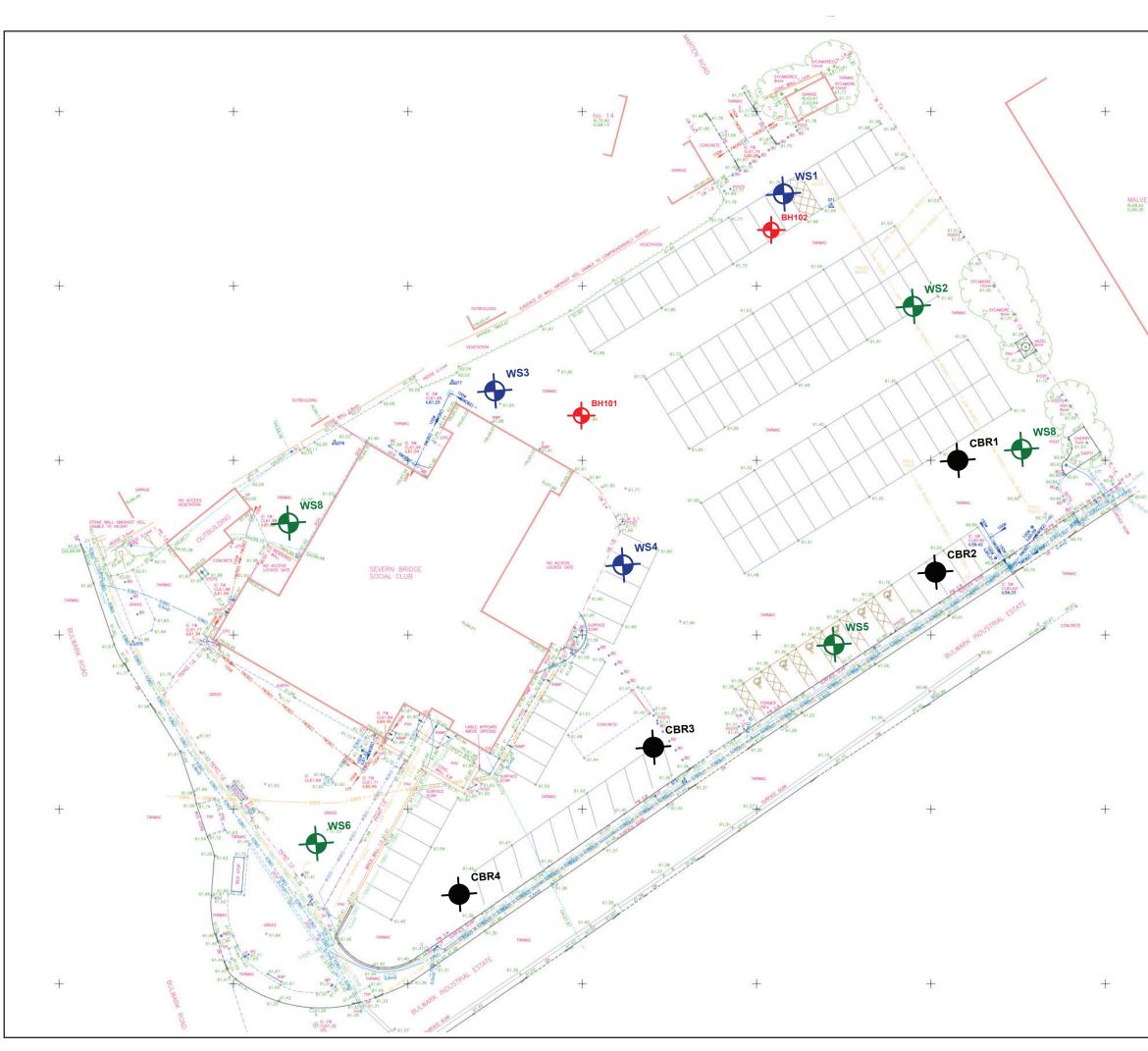
Table 4: Comparison of Soil Chemical Analyses with GAC

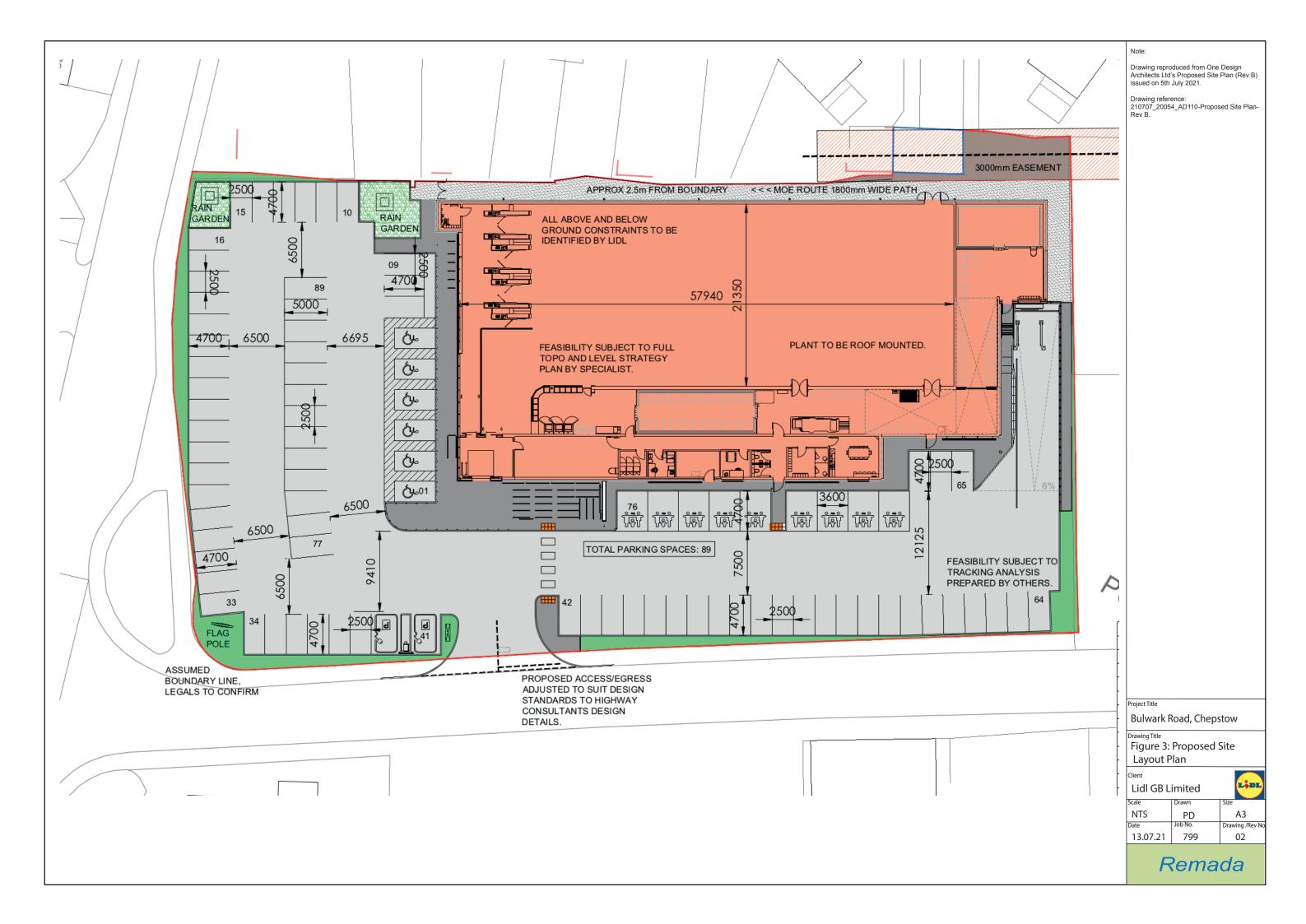
Γ										
Laboratory ID						20-33135	20-33135	20-33135	20-33135	20-33135
Sample ID			Client Sa		LQM / CIEH Commercial	1107853	1107856	1107857	1107858	1107859
Borehole				Location:	GAC 6% SOM	WS2	WS5	WS6	WS7	WS8
Depth Sample Date				Depth (m): mpled (\$):		0.20 - 0.70 30-Nov-2020	0.10 - 1.0 30-Nov-2020	0.20 - 0.50 30-Nov-2020	0.05 - 0.50 30-Nov-2020	0.10 - 0.60 30-Nov-2020
Determinand	Accred.	SOP	Units	LOD	[mg/kg unless stated]	30-1100-2020	30-1100-2020	30-1107-2020	30-1100-2020	30-1100-2020
АСМ Туре	U	2192	enne	N/A	[mg/ng uniced stated]	-	-	-	-	Cement
Asbestos Identification	U	2192	%	0.001		No Asbestos Detected	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected	Chrysotile
ACM Detection Stage	U	2192		N/A		-	-	-	-	Stereo Microscopy
Asbestos by Gravimetry										0.059
Total Asbestos	N	0000	0/	0.000			45		47	0.059
Moisture pH	N M	2030 2010	%	0.020 N/A		6.8 8.7	15 8.1	14 9.2	17 8.4	6.2 11.5
Arsenic	M	2010	mg/kg	1.0	640	17.0	20.0	9.2 18.0	24.0	24
Beryllium	U	2450	mg/kg	1.0	12	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Cadmium	M	2450	mg/kg	0.10	190	0.25	0.54	0.82	0.61	0.27
Copper	M	2450	mg/kg	0.50	68000	13	36	32	41	10
Mercury	М	2450	mg/kg	0.10	58 ^{vap} (25.8)	< 0.10	0.3	0.46	0.46	< 0.10
Nickel	М	2450	mg/kg	0.50	980	11	22	18	21	11
Lead	М	2450	mg/kg	0.50	2300	22.0	120	180	150.0	160
Selenium	М	2450	mg/kg	0.20	12000	< 0.20	0.31	0.25	< 0.20	< 0.20
Vanadium	U	2450	mg/kg	5.0	9000	15.0	21	16	20	16
Zinc	М	2450	mg/kg	0.50	730000	51	170	250	210	180
Chromium (Trivalent)	N	2490	mg/kg	1.0	8600	10	14	10	14	12
Chromium (Hexavalent)	N	2490	mg/kg	0.50	33	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Fraction of Organic Carbon	М	2625		0.0010		0.0560	0.0540	0.0460 7.931	0.0630	0.0013
Calculated SOM from FOC Calculated TOC from FOC						9.655 5.600	9.310 5.400	4.600	10.862 6.300	0.224 0.130
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	12000sol (1150)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	40000sol (736)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	M	2680	mg/kg	1.0	11000vap (451)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	М	2680	mg/kg	1.0	47000vap (283)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	М	2680	mg/kg	1.0	90000sol (142)	10	< 1.0	9.6	< 1.0	< 1.0
Aliphatic TPH >C16-C21	М	2680	mg/kg	1.0	1800000	< 1.0	< 1.0	14	< 1.0	15
Aliphatic TPH >C21-C35	М	2680	mg/kg	1.0	100000	100	< 1.0	85	< 1.0	220
Total Aliphatic Hydrocarbons:	N	2680	mg/kg	5.0		110	< 5.0	110	< 5.0	230
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	86000sol (4710)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	180000vap (4360)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	M	2680	mg/kg	1.0	17000vap (3580)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12 Aromatic TPH >C12-C16	M	2680 2680	mg/kg mg/kg	1.0 1.0	34000sol (2150) 38000	< 1.0 12	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	28000	< 1.0	< 1.0	84	< 1.0	48.0
Aromatic TPH >C21-C35	M	2680	mg/kg	1.0	28000	410	< 1.0	600	< 1.0	1100
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	20000	490	< 5.0	730	< 5.0	1400
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0		600	< 10	840	< 10	1600
Naphthalene	М	2700	mg/kg	0.10	1100sol (432)	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	М	2700	mg/kg	0.10	100000	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	М	2700	mg/kg	0.10	100000	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	М	2700	mg/kg	0.10	71000	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	М	2700	mg/kg	0.10	23000	< 0.10	0.58	7.6	2.7	< 0.10
Anthracene	М	2700	mg/kg	0.10	540000	< 0.10	0.14	3.4	1	< 0.10
Fluoranthene	M	2700	mg/kg	0.10	23000	0.44	1.1	27	7.3	< 0.10
Pyrene	M	2700	mg/kg	0.10	54000	0.53	1.2 0.84	26	8.1	< 0.10
Benzo[a]anthracene	M	2700 2700	mg/kg mg/kg	0.10	180 350	< 0.10	0.84	14 14	4.2 3.6	< 0.10 < 0.10
Chrysene Benzo[b]fluoranthene	M	2700	mg/kg mg/kg	0.10	45	< 0.10	1	23	4.5	< 0.10
Benzo[k]fluoranthene	M	2700	mg/kg	0.10	1200	< 0.10	0.58	8.7	2.5	< 0.10
Benzo[a]pyrene	M	2700	mg/kg	0.10	36	< 0.10	0.88	18	4.8	< 0.10
Indeno(1,2,3-c,d)Pyrene	M	2700	mg/kg	0.10	510	< 0.10	0.44	13	3.7	< 0.10
Dibenz(a,h)Anthracene	M	2700	mg/kg	0.10	3.6	<0.10	0.27	3.8	1.6	<0.1
Benzo[g,h,i]perylene	М	2700	mg/kg	0.10	4000	< 0.10	1.5	12	3.9	< 0.10
Total Of 16 PAH's	М	2700	mg/kg	2.0		< 2.0	10	170	48	< 2.0
Benzene	М	2760	µg/kg	1.0	90	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Toluene	M	2760	µg/kg	1.0	180000vap (4360)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Ethylbenzene	M	2760	µg/kg	1.0	27000vap (2840)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
m-Xylene	М	2760	µg/kg	1.0	33000sol (2620)	< 0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001
p-Xylene	м	2760	µg/kg	10	31000vap (3460) 30000sol (3170)	<0.001				
p-xyrene o-Xylene Total Phenols	M	2760 2920	µg/kg µg/kg mg/kg	1.0 0.30	30000sol (3170) 1300dir (34000)	<0.001 <0.001 < 0.30				

Determinand concentration below the GAC

Determinant concentration in exceedance of GAC Determinant concentration in exceedance of the vapour/solubility saturation limit.


NC: No published criteria


NC: No published criteria vap: Screening criteria presented exceed the vapour saturation limit, which is presented in brackets. sc: Screening criteria presented exceed the solubility saturation limit, which is presented in brackets. dir: Screening criteria based on threshold protective of direct skin contact (guideline in brackets based on health effects following long term exposure provided for illustration only). (1): For assessment based on the use of the surrogate marker approach the GAC for Coal Tar must be used instead of benzo(a)pyrene.



FIGURES

	Note: Existing topographic and layout drawing reproduced from EDI Survey Ltd's Topographic & Services Survey, drawing No. 19190/T/01-01, issued in November 2020
IRN TYRES	
	Project Title
	Bulwark Road, Chepstow
	Figure 2: Existing Layout & Exploratory Locations
	Client Lidl Great Britain Ltd
	NTS GJ A3 Date Job No. Drawing /Rev No. 05.01.21 799 01
	Remada

EXPLORATORY LOGS

Remada

Percussion Drilling Log

cation: Ch oject No. :	e: Bulwark				idl Great B				Date: 30/11/2				
OJECT NO. :	-			Contrac									
Borehole I		Hole	е Туре	Crew N	ame: Level		Logged	By	Drilling Equip		Page	Numbe	
WS			VS	61	.73m AoD		JM	Бу	1:25			et 1 of 1	
ell Water Strikes			n Situ Testir Resul		Depth (m)	Level (m)	Legend		Stratum	Descripti	on		
Strike:	Depth (1 0.15 - 0. 0.55 - 0. 0.55 - 0. 1.00	40 ES 95 B	Resul	78 for	(m) 0.04 0.10 0.15 0.55 0.75 1.30	(m) 61.69 61.63 61.58 61.18 60.98 60.43		MADE (MADE (angular mudstoi Soft to f CLAY. 0 quartz a Firm fria CLAY. 0 quartz a Very stif CLAY. S	GROUND: Asph GROUND: Asph GROUND: Brow to subangular r ne and shale irm brown slight Gravel is angular and limestone. able light brown Gravel is angular and limestone ff friable light bro Sand is fine to med	alt alt rn grey slig nedium to tly sandy si r medium p slightly sar r medium p own sandy edium. Gra	htly sandy coarse grave ilty gravelly oredominantl ody gravelly oredominantl gravelly silty avel is angul estone.	ly of silty ly of y	

Remada

Percussion Drilling Log

Project Name: Bulwark Road Location: Chepstow						Client: Lidl Great Britain Ltd					Date: 30/11/2020					
						Contractor:										
Project No. : 799.02							Crew Name:					Drilling Equipment:				
Borehole Number Hole Type WS2 WS					Level Logged 61.42m AoD JM											
/ell	Water Strikes	Sa	-	and In Situ Testir		- (')		Level	Legend	Stratum Description						
<u></u>	Suikes	Depth ((m) Ty	ре	Resul	ts	(m)	(m) 61.32 61.22		MADE GROUND: Asphalt. MADE GROUND: Brown grey slightly sandy angular to subangular medium to coarse gravel of mudstone and shale MADE GROUND: Soft to firm dark brown mottled					+	
		0.20 - 0	.70 E	s			0.10 0.20									
							0.70	00.70		dark gro subang coal an	ey sandy gra ular medium d brick fragm ng very san	velly clay. Gra to coarse pre ents_	avel is an edominan	gular to tly of		
							0.70	60.72	× <u>×××××××</u> × <u> </u>	Firm br	own silty CLA	Y.				
		0.85 - 1 1.00		рт	N=50 8,8/13,12,		0.85	60.57		sandy a	ff yellowish b angular to sul EL of Limesto	o angular fine	brown cl to coars	ayey e		
							1.45	59.97			End of	Borehole at 1.	450m		_	
pth	Hole Diam Base I	eter Diameter	Ca Depth Ba	sing Diam ase E	ieter Diameter	Depth To	p Depth Ba	Chiselling se Dura	tion	Tool	Depth Top	Inclination a Depth Base	and Orienta Inclinatio		ntatio	

		Bulwark	. KUa	u			Lidl Great B		4		Date: 30/1	172020			
	on: Che					Contrac						· ·			
-	t No. : 7 ehole N			Hole	Туре	Crew N	ame: Level		Logged	Bv	Drilling Ec	upment: cale	Pad	ge Numb	er
	WS3				/S	61	.93m AoD		JM	_ ,		1:25		neet 1 of	
əll	Water Strikes	Sa Depth (and In Type	n Situ Testin Resul		Depth (m)	Level (m)	Legend		Strat	tum Descrip	otion		
		0.15 - 0		ES			0.05	61.88		MADE Soft be	GROUND: A coming firm	sphalt. brown silty C	LAY.		1
		0.60 - 1 1.00		B	50 (8,13/5 165mr	50 for n)	0.60	61.33		Very st angula Limeste	r to sub angu	n silty gravel! Ilar fine to co	y CLAY. Gra barse of	avel is	
<u> </u>							1.32	60.62	<u>* * * * × -</u>		End of	Borehole at 1	.320m		
	Hole Diam	ator		Caring	Diametor			Chicolling				Inclination	and Orientatio		
th	Hole Diame Base [eter Diameter	Dept	Casing L h Base	Diameter Diameter	Depth T	op Depth Ba	Chiselling Ise Dura	ation	Tool	Depth Top	Depth Base			tatio
	arks Iroundwa	iter encou	nterec	 I		<u> </u>					1				

ojeo	t Name	: Bulwark	Road		Client:	Lidl Great B	ritain Lto			Date: 30/11/2020)		
cati	on: Che	pstow			Contrac	ctor:							
ojeo	t No. : 7	799.02			Crew N	ame:				Drilling Equipme	nt:		
Bor	ehole N WS4		Ho	ole Type WS	61	Level .60m AoD		Logged JM	ΙВу	Scale 1:25		Page Num Sheet 1 o	
ell	Water Strikes	Sa Depth		I In Situ Testi e Resu		Depth (m)	Level (m)	Legend		Stratum De	escription		
					115				MADE	GROUND: Asphalt.			
		0.10 - 0	.25 ES			0.10 0.25	61.50 61.35		slightly Soft bro CLAY. S fine to r	GROUND: Very soft sandy silty clay. Sar own mottled light bro Sand is fine to coars nedium gravel of lin <i>ne cobble</i> .	nd is fine to own slightly se, recovere	coarse. sandy silty d as angular	
				_		0.80	60.80			stiff brown slightly s o medium.	andy silty C	LAY. Sand	
 		1.00		T 50 (2,8/5 135m	50 for m)	1.10	60.50	××					
••••		1.10 - 1	.29 B			1.29	60.31	XX XX	CLAY. (ff light yellowish bro Gravel is angular to of Limestone. End of Borehol	sub angular	fine to	
				ng Diameter			Chiselling			Incli	nation and Ori	entation	
	Hole Diam							Al	T				
oth		eter Diameter	Depth Bas		Depth T	op Depth Bas	se Dura	llion	Tool	Depth Top Depth	Base Inclin	ation Orie	ntatio

Project Name	: Bulwark Ro	ad		Client: I	_idl Great B	ritain Lto	ł		Date: 30/1	1/2020			
Location: Che	epstow			Contrac	tor:								
Project No. : 7	799.02			Crew N	ame:				Drilling Eq	uipment:			
Borehole N	lumber	Hole	Туре		Level		Logged	Ву	S	cale	Page	e Numbe	er
WS5			VS		.30m AoD		JM		1	:25	She	et 1 of ?	1
Well Water Strikes	-		n Situ Testir	-	Depth (m)	Level (m)	Legend		Strat	um Descrip	tion		
		Туре	Resul	ts	0.05	61.25	*******	MADE	GROUND: A	sphalt.			
	0.10 - 1.00	ES			0.10	61.20		angular <u>mudstor</u> MADE (gravelly angular	to subangul ne and shale GROUND: S silty clay. Sa to sub angu	rown grey sli ar medium to oft to firm dai and is fine to lar fine to me clinker and b	coarse gra k grey sand coarse. Gra dium of mix	ly vel is	
	1.00	SPT	N=24 (4,5/6	3,5,6,7)	1.00	60.30		sandy g coarse.	ravelly silty	tiff brown mo clay. Sand is gular fine to i brick.	medium to		1
	1.55 - 2.15	В			1.55	59.75		Very sti	ff yellowish b	rown mottled	brown san	dy	-
	1.70	SPT	N=50 (8,8/13,12,					very gra angular	avelly CLAY. fine to coars	gravel is ang se of limestor	ular to sub e.		2
2///22//2					2.15	59.15			End of	Borehole at 2.	150m		_
Hole Diam			Diameter			Chiselling					and Orientation		3
		oth Base	Diameter	Depth To	op Depth Ba		ation	Tool	Depth Top	Depth Base	Inclination	Orient	ation
Remarks 1. No groundwa 2. Installed to 1			e, 0.5m slotted	d pipe.								AGS	

Percussion Drilling Log

Projec	t Name	: Bulwark	Road		Client:	_idl Great B	ritain Lto	1		Date: 01/1	2/2020			
Locati	on: Che	pstow			Contrac	ctor:								
Proiec	:t No. : 7	799.02			Crew N	ame:				Drilling Eq	uipment:			
-	ehole N		Hol	е Туре		Level		Logged	By		cale	Pa	ge Numb	er
	WS6			ws	61	.51m AoD		JM			:25		neet 1 of [·]	
Well	Water	Sam	nple and I	In Situ Testi	ng	Depth	Level	Legend		Strat	um Descrip	ition		
with the second	Strikes	Depth (r	n) Type	Resu	ts	(m)	(m)	Logona						
									MADE	GROUND: T	opsoil.			-
		0.20 - 0.5 0.20 - 0.6				0.20	61.31		gravelly sub ang	fine to coar gular fine to c	ark brown sl se sand. Gra coarse of lime	vel is angu	lar to	
						0.50	61.01		MADE	nal brick frag GROUND: S y gravelly cla	gments. oft to firm da ay. Sand is rr	rk brown s redium to c	andy coarse.	
						0.70	60.81		Gravel i	is angular to	sub angular luding brick	fine to coa	rse of	
									Very sti	ff yellowish b	orown silty ve	ry gravelly	CLAY.	-
		1.00	SPT	66 (10,7/0	66 for				Glaveri	is angular in	e to medium	or innestor	le.	1 -
				150m	n)									-
						1.30	60.21							-
						1.30	00.21			End of	Borehole at 1	.300m		=
														2 -
														-
														=
														-
														-
														-
														3 —
														3 —
														-
														-
														-
														-
														-
														-
														4 -
														-
														-
														-
														-
														-
														5 —
	Hole Diame	eter	Casing	g Diameter			Chiselling				Inclination	and Orientati	on	
Depth			Depth Base	Diameter	Depth T	op Depth Ba		ation	Tool	Depth Top	Depth Base	Inclination		ation
Rema														•
1. No g	groundwa	iter encount	tered.											

2. Installed to 1.0m bgl. 0.5m plain pipe, 0.5m slotted pipe.

											0			
Projec	t Name	Bulwark	Road		Client: L	idl Great B	ritain Lto	l		Date: 01/1	2/2020			
Locati	on: Che	pstow			Contrac	tor:								
Projec	ct No. : 7	99.02			Crew N	ame:				Drilling Eq	uipment:			
Bor	ehole N	umber	Hole	е Туре		Level		Logged	Ву	S	cale	Page	e Numbe	ər
	WS7			VS		.98m AoD		JM		1	:25	She	et 1 of 1	1
Well	Water Strikes	San Depth (-	n Situ Testir Resul	-	Depth (m)	Level (m)	Legend		Strat	um Descrip	tion		
		0.05 - 0.				0.05	61.93			GROUND: A	sphalt.	tly sandy ar	avelly	
		0.05 - 0.		50 (5,9/5 165mr		0.05	61.93 61.68 61.48 60.66		MADE (silty clay medium MADE (mottled angular Very stil	GROUND: S y. Sand is fin 1 coal. GROUND: S grey silty ve medium coa ff yellowish b is angular to one.	oft grey sligh ne to coarse. oft to firm yel ry gravelly cla	Gravel is an lowish brow ay. Gravel is ry gravelly C fine to mediu	gular n	2
Depth i	Hole Diam Base [eter Diameter	Casing Depth Base	Diameter Diameter	Depth To	p Depth Ba	Chiselling se Dura	tion	Tool	Depth Top	Inclination a	and Orientation	Orienta	4
Rema		iter encoun	itered.											
				o 0 Em clotto	م من م							1		

oject Name	Bulwark	Road		Client: L	idl Great B	ritain Ltd	l		Date: 01/12	2/2020			
cation: Che	pstow			Contrac	tor:								
oject No. : 7	99.02			Crew Na	ame:				Drilling Equ	ipment:			
Borehole N WS8			e Type VS	60	Level .90m AoD		Logged JM	Ву		ale 25	-	e Numbe eet 1 of 1	
Water			n Situ Testii	1	Depth	Level			•			001101	Ė
ell Strikes	Depth (Resul		(m)	(m)	Legend			m Descrip	tion		
	0.10 - 0. 0.90 - 1. 1.00	90 ES	50 (8,15/5 160mr	50 for	0.05 0.10 0.60 0.75 0.90 1.31	60.85 60.80 60.15 60.00 59.59		MADE angular mudsto MADE clayey litholog MADE sand. Multico coarse quartz, Very sti		wn grey sli r medium to own mottled coarse gra oal and brid liticoloured angular to s ixed litholog d coal. own mottleo	o coarse gra I grey sandy vel of mixed k. fine to medi ub angular gies includir d brown silty medium of	ivel of / ium fine to ng	
Hole Diam pth Base	eter Diameter	Casing Depth Base	Diameter Diameter	Depth To	p Depth Bas	Chiselling se Dura	tion	Tool	Depth Top	Inclination Depth Base	and Orientatio	n Orienta	L tatir
	יימוויסוטו		שמוופופו					1001			monnauon	Cherlia	
		l		1		1			1		í.	1	

Remada				Ro	otar	y Co	ore	Log		
Project Name: Bulwar	k Road		Client: L	idl Great E	Britain Ltd			Date:		
Location: Chepstow			Contrac	tor:						
Project No. : 799.02			Crew Na	ame:				Drilling Equipment:		
Borehole Number BH101		e Type RC		Level		Logged		Scale 1:25	Page Nur Sheet 1 d	
Well Water Dep	th Type		meter overy PT)	Depth	Level	Legend		Stratum Descri	1	
(m)) /FI	TCR SCR RC	(S Clair	(m)	(m)		MADE			
4.15				0.09 0.15 1.00			MADE sandy coarse Firm b Grave mixed rare co Yellow as bei	GROUND: Asphalt GROUND: Brown gra angular to subangula a gravel of mudstone a rown slightly gravelly l is subangular fine to lithologies including li bal fragments.	r medium to and shale silty CLAY. coarse of mestone and IE. Assessed ng as requires	
	Diameter Diameter Dep	Chis oth Top Depth Base	elling Duration	Tool Dep		n and Orienta Base Inclination		Depth Top Depth Base Type	ing Flush Colour Min (%)	Max (%)
Remarks										U IS

Re	ema	da					Ro	otar	y Co	ore	Log			
Projec	t Name:	: Bulwark Ro	ad		(Client: L	idl Great E	Britain Ltd			Date:			
Locati	on: Che	pstow				Contract	tor:							
Projec	t No. : 7	99.02			(Crew Na	ame:				Drilling Equipmen	t:		
Bor	ehole N BH102			e Type RC			Level		Logged	Ву	Scale 1:25		Page Num Sheet 1 o	
Well	Water	Depth (m)	Type /FI			Diameter Recovery (SPT)	Depth (m)	Level (m)	Legend		Stratum Des	scription		
		1.50 - 1.64 4.15 - 4.31					0.04 0.10 0.15 0.45 0.70			MADE MADE sandy coarse Firm b Grave mixed rare co Grave limest Yellow as bei	rish brown LIMEST ng strong to very s le blows of a geolo	alt n grey slig gular medi ne and sh elly silty C e to coarso ng limesto pown grave e to coarso to coarso TONE. As strong as r	um to ale LAY. e of ne and lly CLAY. e of sessed requires	
Lia'-	Diamat	Cooling Dir	Type/FI	TCR SC		D/R/(SPT)		Inclin-4	n and Orient	ation	[Drilling Fire	h	5 —
Hole Depth Bas	Diameter e Diamete	Casing Diam r Depth Base Dia		pth Top Dept	Chisel	Iling Duration	Tool Dep		on and Orienta Base Inclination		Depth Top Depth Base	Drilling Flus Type Cold		Max (%)
Rema	arks		1	I		1		I			<u> </u>	I	AG	J S

APPENDIX A Dynamic Cone Penetrometer Test Results

Client:	Lidl Great Br	itain Ltd	Struct' Eng':			Test No:	CBR1	Location:					
roject No:	799.01		Date:	04.01.20)21	Start Depth	Surfacing	Test Strata:	Made Gr	ound & Si	ub-base		
		Log10(CBR) = 2.480-1.0	57 x Log1	.0(mm/blow)			Weather:	Dry Sunr	ıγ			
o of Blows	Depth Reading mm	Penetration /Blow mm	CBR %				Est	imated CB	R %				
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 24 25 26 27 28 29 30 31 32 24 25 26 27 28 29 30 31 32 24 25 26 27 28 29 30 31 32 24 25 26 27 28 29 30 31 32 24 25 26 27 28 29 30 31 32 24 25 26 27 28 29 30 31 32 24 25 26 27 28 29 30 31 32 24 25 26 27 28 30 31 32 34 35 36 37 38 39 30 31 32 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 40 30 31 32 33 34 35 36 37 38 39 40 30 30 31 32 30 34 35 36 37 38 39 40 30 37 38 39 40 30 37 38 39 40 30 37 38 39 40 30 37 38 39 40 30 37 38 39 40 30 37 38 39 40 30 37 38 39 40 30 37 38 39 40 40 39 40 30 37 38 39 40 40 37 38 39 40 40 40 40 40 40 40 40 40 40	70 125 153 194 229 251 269 280 304 324 341 356 367 383 397 412 424 426 427 428 429	0 55.0 28.0 41.0 35.0 22.0 18.0 17.0 15.0 14.0 15.0 12.0 1.0 1.0 1.0	4.4 8.9 6.0 7.0 11.5 14.2 23.9 10.5 12.7 15.1 17.3 23.9 16.1 18.6 17.3 21.8 145.1 302.0 302.0	0 0 50 - 100 - 150 - 200 - 250 - 300 - 300 - 400 - 400 - - - - - - - - - - - - -								90	

		TRI								
lient:	Lidl Great Br	itain Ltd	Struct' Eng':			Test No:	CBR1	Location:		
Project No:	799.01		Date:	04.01.2	2021	Start Depth:	Surfacing	Test Strata:	Made Ground	& Sub-base
		Log10(CBR) = 2.480-1.0	57 x Log	10(mm/blow)			Weather:	Dry Sunny	
	Depth	Penetration					E .+.			
o of Blows	Reading mm	/Blow mm	CBR %		0 10	20 3		mated CBR 50	% 60 70	80 90 1
0	83 143	0 60.0	4.0	0			-0			
2	169	26.0	9.6							
3 4	189 207	20.0 18.0	12.7 14.2							
5	210	3.0	94.6							
6 7	217 222	7.0 5.0	38.6 55.1							
8	225	3.0	94.6							
9 10	229 241	4.0 12.0	69.8 21.8							
11	248	7.0	38.6							
12 13	253 262	5.0 9.0	55.1 29.6	100						
14	267	5.0	55.1							
15 16	271 275	4.0 4.0	69.8 69.8							
10	275	4.0	69.8							
18 19	281 284	2.0 3.0	145.1 94.6		٩ -					
20	289	5.0	55.1							
21 22	291 297	2.0	145.1 45.4							
22	303	6.0 6.0	45.4 45.4		Ι Ν					
24	310	7.0	38.6							
25 26	314 316	4.0 2.0	69.8 145.1	200						
27	319	3.0	94.6				_			•
28 29	322 325	3.0 3.0	94.6 94.6					-		
30	327	2.0	145.1							
31 32	330 335	3.0 5.0	94.6 55.1			\leq				
33	340	5.0	55.1							
34 35	344 346	4.0 2.0	69.8 145.1							
36	350	4.0	69.8						-	
37 38	353 356	3.0 3.0	94.6 94.6					•		
39	359	3.0	94.6	300		_				
40 41	362 365	3.0 3.0	94.6 94.6				~			
41	369	4.0	69.8							
43 44	375 378	6.0 3.0	45.4 94.6					1		
44	383	5.0	55.1							
46 47	387 392	4.0 5.0	69.8 55.1							
48	395	3.0	94.6					-	-	
49 50	398 402	3.0 4.0	94.6 69.8					-		
51	402	4.0	55.1	400				•		
52 53	412 417	5.0 5.0	55.1 55.1	+00				1		
54	422	5.0	55.1					1		
55 56	428 432	6.0 4.0	45.4 69.8					-		
57	436	4.0	69.8							
58 59	440 443	4.0 3.0	69.8 94.6							
60	447	4.0	69.8					-		
61 62	450 454	3.0 4.0	94.6 69.8			1				
63	457	3.0	94.6					I.		
64 65	462 471	5.0 9.0	55.1 29.6	500						
65 66	471 476	9.0 5.0	29.6 55.1						9	
67	481	5.0	55.1							
68 69	486 490	5.0 4.0	55.1 69.8							
70	494	4.0	69.8							
71 72	498 503	4.0 5.0	69.8 55.1							
73	506	3.0	94.6							
74 75	509 513	3.0 4.0	94.6 69.8							
76	517	4.0	69.8							
77 78	518 519	1.0 1.0	302.0 302.0	600			[I I
otes:										

Client:	Lidl Great Br	itain Ltd	Struct' Eng':				Test No:	CBR3	Location:					
roject No:	799.01		Date:	04.01.2	2021		Start Depth	: Surfacing	Test Strata:	Made G	Ground & S	Sub-base		
	Lo	g10(CBR) =	= 2.480-1.0	57 x Lo	og10(m	m/blov	v)		Weather:	Dry Sur	iny			
lo of Blows	Depth Reading mm	Penetration /Blow mm	CBR %					Est	imated CE	3R %				
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 24 25 26 31 31 32 24 25 26 31 31 32 24 25 26 31 31 32 24 25 26 31 31 32 24 25 26 27 28 29 30 31 32 24 25 26 27 28 29 30 31 32 24 25 26 27 28 29 30 31 32 24 25 26 27 28 29 30 31 32 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 30 31 32 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 34 35 36 37 38 39 30 31 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 34 35 36 37 38 39 30 31 32 30 31 34 35 36 37 38 39 30 30 31 35 36 37 38 39 40 30 37 38 39 40 30 37 38 39 40 30 37 38 39 40 30 37 38 39 40 30 37 38 39 40 30 37 38 39 40 30 37 38 39 40 30 37 38 39 40 30 30 37 38 39 40 40 37 38 39 40 40 37 38 39 40 40 37 38 39 40 40 40 40 40 40 40 40 40 40	59 124 153 178 196 210 224 234 240 248 251 256 260 264 268 273 279 280 281	0 65.0 29.0 18.0 14.0 10.0 6.0 8.0 3.0 4.0 4.0 4.0 5.0 6.0 1.0	10.1 14.2 18.6 26.5 45.4 33.5 94.6 55.1 69.8 69.8 69.8 55.1 45.4 302.0	0 50 100 150 200 250 300						50			90	

	Lidl Great Br	itain Ltd	Struct' Eng':				Test No:	CBR4	Location:					
Project No:	799.01		Date:	04.01.2	2021		Start Depth	: Surfacing	Test Strata	: Made	Ground &	Sub-base		
	Lo	g10(CBR) =	= 2.480-1.0	57 x Lu	og10(n	nm/blov	v)		Weather:	Dry Su	nny			
lo of Blows	Depth Reading	Penetration /Blow mm	CBR %					Est	imated (CBR %				
0	mm	0			0	10	20 3	30 40	50	60	70	80	90	100
1	61 129	68.0	3.5	0										
2	125	26.0												
2	155	12.0	21.8											
5 4														
	183	16.0	16.1	50										
5	192	9.0												
6	221	29.0												
7	234	13.0	20.1											
8	251	17.0	15.1											
9	261	10.0	26.5	100										
10	270	9.0												
11	277	7.0	38.6											
12	283	6.0	45.4											
13	288	5.0		150										
14	293	5.0	55.1											
15	302	9.0	29.6				$\mathbf{>}$							
16	311	9.0	29.6				\angle							
17	314	3.0	94.6											
18	319	5.0	55.1	200										
19	322	3.0	94.6											
20	327	5.0	55.1			\leq								
21	333	6.0	45.4											
22	339	6.0	45.4	250										
23	340	1.0	302.0	200		-								
24	344	4.0	69.8											
25	348	4.0	69.8					-						
26	351	4.0								3				
				300			-				-		-	
27	353	2.0								-				
28	355	2.0	145.1											
29	359	4.0	69.8											
30	362	3.0	94.6	350							-			
31	366	4.0	69.8	330							-			
32	368	2.0									-		-	_
33	371	3.0												
34														
35	377	3.0		400		_								
36	379	2.0												
~	380	1.0												
37		2.0												
38	202	1.0		450										
	383		302.0	450										

Appendix B Laboratory Chemical Analyses

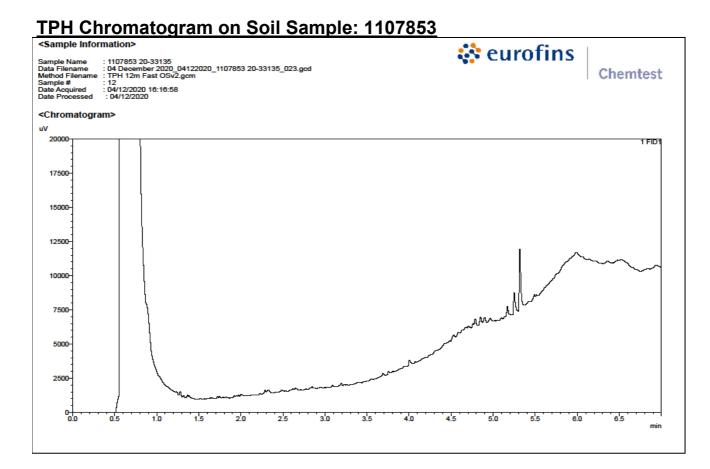
Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	20-33135-1		
Initial Date of Issue:	09-Dec-2020		
Client	Remada Ltd		
Client Address:	Forward House 17 High Street Henley in Arden B95 5AA		
Contact(s):	Greg Jones Peter Dickinson		
Project	799.02 Bulwark Road, Chepstow		
Quotation No.:		Date Received:	03-Dec-2020
Order No.:		Date Instructed:	03-Dec-2020
No. of Samples:	7		
Turnaround (Wkdays):	5	Results Due:	09-Dec-2020
Date Approved:	09-Dec-2020		
Approved By:			
Manney			

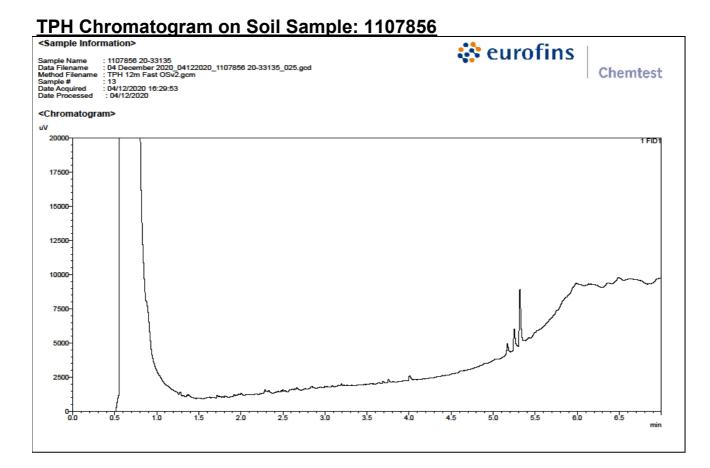
Details:

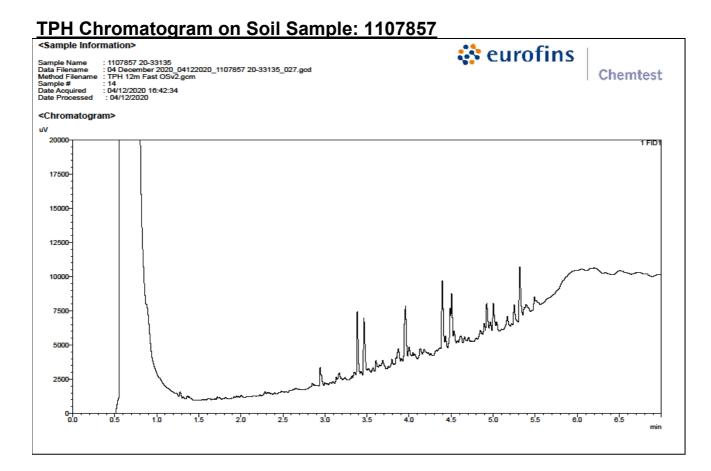
Glynn Harvey, Technical Manager

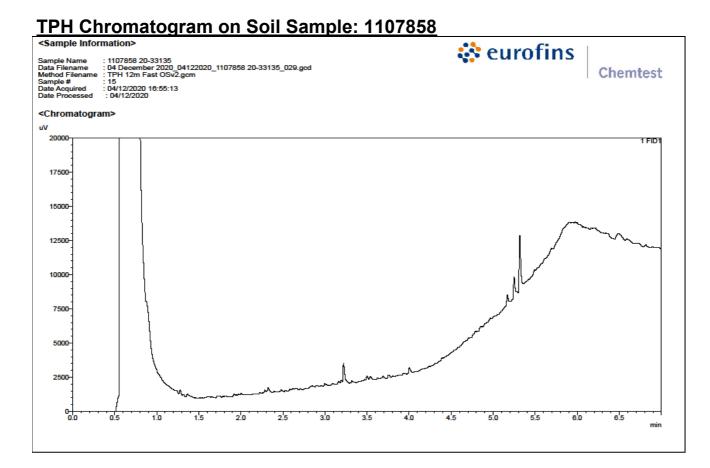
<u> Results - Soil</u>

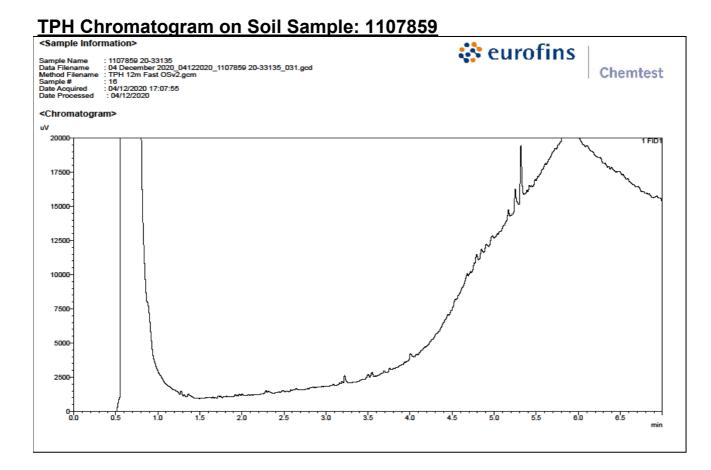

Project: 799.02 Bulwark Road, Chepstow

Client: Remada Ltd		Ch	emtest .	Job No.:	20-33135	20-33135	20-33135	20-33135	20-33135	20-33135	20-33135
Quotation No.:		Chem	test Sar	nple ID.:	1107852	1107853	1107854	1107856	1107857	1107858	1107859
		ç	Sample I	_ocation:	WS1	WS2	WS3	WS5	WS6	WS7	WS8
				ole Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top D	epth (m):	0.15	0.20	0.15	0.10	0.20	0.05	0.10
		B	ottom D	epth (m):	0.40	0.70	0.60	1.00	0.50	0.50	0.60
			Date S	Sampled:	30-Nov-2020	30-Nov-2020	30-Nov-2020	30-Nov-2020	30-Nov-2020	30-Nov-2020	30-Nov-2020
			Asbes	stos Lab:		COVENTRY		COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD							
АСМ Туре	U	2192		N/A		-		-	-	-	Cement
Asbestos Identification	U	2192		N/A		No Asbestos Detected		No Asbestos Detected	No Asbestos Detected	No Asbestos Detected	Chrysotile
ACM Detection Stage	U	2192		N/A		-		-	-	-	Stereo Microscopy
Asbestos by Gravimetry	U	2192	%	0.001							0.059
Total Asbestos	U	2192	%	0.001							0.059
Moisture	Ν	2030	%	0.020	19	6.8	14	15	14	17	6.2
Chromatogram (TPH)	N			N/A		See Attached		See Attached	See Attached	See Attached	See Attached
рН	U	2010		4.0	8.3	8.7	8.4	8.1	9.2	8.4	11.5
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40		0.86		2.2	0.83	0.64	< 0.40
Magnesium (Water Soluble)	Ν	2120	g/l	0.010	< 0.010	0.014	< 0.010	< 0.010			
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	< 0.010	0.11	< 0.010	0.016			
Total Sulphur	U	2175	%	0.010	0.063	0.13	0.022	0.072			
Chloride (Water Soluble)	U	2220	g/l	0.010	0.18	0.041	0.015	0.027			
Nitrate (Water Soluble)	N	2220	g/l	0.010	< 0.010	< 0.010	< 0.010	< 0.010			
Ammonium (Water Soluble)	U	2120	g/l	0.01	< 0.01	< 0.01	< 0.01	< 0.01			
Sulphate (Acid Soluble)	U	2430	%	0.010	0.079	0.078	0.029	0.056			
Arsenic	U	2450	mg/kg	1.0		17		20	18	24	24
Beryllium	U	2450	mg/kg	1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Cadmium	U	2450	mg/kg	0.10		0.25		0.54	0.82	0.61	0.27
Copper	U	2450	mg/kg	0.50		13		36	32	41	10
Mercury	U	2450	mg/kg	0.10		< 0.10		0.27	0.46	0.46	< 0.10
Nickel	U	2450	mg/kg	0.50		11		22	18	21	11
Lead	U	2450	mg/kg	0.50		22		120	180	150	160
Selenium	U	2450	mg/kg	0.20		< 0.20		0.31	0.25	< 0.20	< 0.20
Vanadium	U	2450	mg/kg	5.0		15		21	16	20	16
Zinc	U	2450	mg/kg	0.50		51		170	250	210	180
Chromium (Trivalent)	N	2490	mg/kg	1.0		9.5		14	9.9	14	12
Chromium (Hexavalent)	N	2490	mg/kg	0.50		< 0.50		< 0.50	< 0.50	< 0.50	< 0.50
Fraction of Organic Carbon	U	2625		0.0010		0.056		0.054	0.046	0.063	0.0013
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0		10		< 1.0	9.6	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0		< 1.0		< 1.0	14	< 1.0	15
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0		100		< 1.0	85	< 1.0	220


<u> Results - Soil</u>


Project: 799.02 Bulwark Road, Chepstow


Client: Remada Ltd		Ch	emtest .	Job No.:	20-33135	20-33135	20-33135	20-33135	20-33135	20-33135	20-33135
Quotation No.:		Chem	test San	nple ID.:	1107852	1107853	1107854	1107856	1107857	1107858	1107859
		S	Sample I	_ocation:	WS1	WS2	WS3	WS5	WS6	WS7	WS8
				ole Type:	SOIL						
				epth (m):	0.15	0.20	0.15	0.10	0.20	0.05	0.10
		B		epth (m):	0.40	0.70	0.60	1.00	0.50	0.50	0.60
				Sampled:	30-Nov-2020						
			Asbes	stos Lab:		COVENTRY		COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD							
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0		110		< 5.0	110	< 5.0	230
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0		12		< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0		< 1.0		< 1.0	84	< 1.0	48
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0		410		< 1.0	600	< 1.0	1100
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0		68		< 1.0	48	< 1.0	270
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0		490		< 5.0	730	< 5.0	1400
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0		600		< 10	840	< 10	1600
Naphthalene	U	2700	mg/kg	0.10		< 0.10		< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	U	2700	mg/kg	0.10		< 0.10		< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	U	2700	mg/kg	0.10		< 0.10		< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	U	2700	mg/kg	0.10		< 0.10		< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	U	2700	mg/kg	0.10		< 0.10		0.58	7.6	2.7	< 0.10
Anthracene	U	2700	mg/kg	0.10		< 0.10		0.14	3.4	1.0	< 0.10
Fluoranthene	U	2700	mg/kg	0.10		0.44		1.1	27	7.3	< 0.10
Pyrene	U	2700	mg/kg	0.10		0.53		1.2	26	8.1	< 0.10
Benzo[a]anthracene	U	2700	mg/kg	0.10		< 0.10		0.84	14	4.2	< 0.10
Chrysene	U	2700	mg/kg	0.10		< 0.10		1.0	14	3.6	< 0.10
Benzo[b]fluoranthene	U	2700	mg/kg	0.10		< 0.10		1.0	23	4.5	< 0.10
Benzo[k]fluoranthene	U	2700	mg/kg	0.10		< 0.10		0.58	8.7	2.5	< 0.10
Benzo[a]pyrene	U	2700	mg/kg	0.10		< 0.10		0.88	18	4.8	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10		< 0.10		0.44	13	3.7	< 0.10
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10		< 0.10		0.27	3.8	1.6	< 0.10
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10		< 0.10		1.5	12	3.9	< 0.10
Total Of 16 PAH's	U	2700	mg/kg	2.0		< 2.0		9.5	170	48	< 2.0
Benzene	U	2760	µg/kg	1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760	µg/kg	1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	µg/kg	1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	µg/kg	1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	2760		1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Total Phenols	U	2920	mg/kg	0.30		< 0.30		< 0.30	< 0.30	< 0.30	< 0.30


Page 4 of 10

Page 7 of 10

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35– C44Aromatics: >C5–C7, >C7–C8, >C8– C10, >C10–C12, >C12–C16, >C16– C21, >C21– C35, >C35– C44	Dichloromethane extraction / GCxGC FID detection
	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.

Report Information

Key

U	UKAS accredited
Μ	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated

- < "less than"
- > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

😵 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.:	20-33519-1		
Initial Date of Issue:	11-Dec-2020		
Client	Remada Ltd		
Client Address:	Forward House 17 High Street Henley in Arden B95 5AA		
Contact(s):	Greg Jones Peter Dickinson		
Project	799.02 Bulwark Road, Chepstow		
Quotation No.:		Date Received:	07-Dec-2020
Order No.:		Date Instructed:	07-Dec-2020
No. of Samples:	1		
Turnaround (Wkdays):	5	Results Due:	11-Dec-2020
Date Approved:	11-Dec-2020		
Approved By:			
Ulph May			

Details:

Glynn Harvey, Technical Manager

Project: 799.02 Bulwark Road, Chepstow

Client: Remada Ltd	Chemtest Job No.:		20-33519		
Quotation No.:	(Chemte	st Sam	ple ID.:	1109483
		Sa	ample Lo	ocation:	WS1
	Sample Type:				SOIL
	Top Depth (m):				0.55
	Bottom Depth (m):				0.95
			Date Sa	ampled:	30-Nov-2020
Determinand	Accred.	SOP	Units	LOD	
Moisture	Ν	2030	%	0.020	13
Magnesium (Water Soluble)	Ν	2120	g/l	0.010	< 0.010
Calcium	Ν	2400	mg/l	20	650
Magnesium (Extractable)	Ν	2400	mg/l	2.0	36

Test Methods

SOP	Title	Parameters included	Method summary
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2400	Cations	Cations	ICP-MS

Report Information

Key

U	UKAS accredited
М	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample

- N/E not evaluated
- < "less than"
- > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

😵 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.:	20-34499-1		
Initial Date of Issue:	21-Dec-2020		
Client	Remada Ltd		
Client Address:	Forward House 17 High Street Henley in Arden B95 5AA		
Contact(s):	Peter Dickinson Greg Jones		
Project	799.02 Bulwark Road, Chepstow		
Quotation No.:		Date Received:	14-Dec-2020
Order No.:	799.02	Date Instructed:	15-Dec-2020
No. of Samples:	2		
Turnaround (Wkdays):	5	Results Due:	21-Dec-2020
Date Approved:	21-Dec-2020		
Approved By:			
Manney			

Details:

Glynn Harvey, Technical Manager

Project: 799.02 Bulwark Road, Chepstow

Client: Remada Ltd		Cherr	ntest Jo	b No.:	20-34499	20-34499
Quotation No.:	C		st Samp		1114152	1114153
Order No.: 799.02		Clien	t Sample	e Ref.:	1	2
		Sar	nple Lo	cation:	WS1	WS2
			Sample		MISCSOLID	MISCSOLID
		Т	op Dept	th (m):	0	0
		Bott	om Dept	th (m):	0.15	0.1
		[Date Sar		10-Dec-2020	10-Dec-2020
Determinand	Accred.	SOP	Units	LOD		
Naphthalene	Ν	2700	mg/kg	0.10	< 0.10	< 0.10
Acenaphthylene	Ν	2700	mg/kg	0.10	< 0.10	< 0.10
Acenaphthene	Ν	2700	mg/kg	0.10	< 0.10	< 0.10
Fluorene	Ν	2700	mg/kg	0.10	< 0.10	< 0.10
Phenanthrene	Ν	2700	mg/kg	0.10	< 0.10	< 0.10
Anthracene	Ν	2700	mg/kg	0.10	< 0.10	< 0.10
Fluoranthene	Ν	2700	mg/kg	0.10	< 0.10	< 0.10
Pyrene	Ν	2700	mg/kg	0.10	< 0.10	< 0.10
Benzo[a]anthracene	Ν	2700	mg/kg	0.10	< 0.10	< 0.10
Chrysene	Ν	2700	mg/kg	0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	Ν	2700	mg/kg	0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	Ν	2700	mg/kg	0.10	< 0.10	< 0.10
Benzo[a]pyrene	Ν	2700	mg/kg	0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	Ν	2700	mg/kg	0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	Ν	2700	mg/kg	0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	Ν	2700	mg/kg	0.10	< 0.10	< 0.10
Coronene	Ν	2700	mg/kg	0.10	< 0.10	< 0.10
Total Of 17 PAH's	Ν	2700	mg/kg	2.0	< 2.0	< 2.0
Moisture	Ν		%	0.10	< 0.10	< 0.10

Test Methods

SOP	Title	Parameters included	Method summary
	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)

Report Information

Key

U	UKAS accredited
Μ	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample

- N/E not evaluated
- < "less than"
- > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

Appendix C Laboratory Geotechnical Analyses

LABORATORY REPORT

4043

Contract Number: PSL21/0345

Report Date: 28 January 2021

- Client's Reference: 799.02
- Client Name: Remada Limited Forward House 17 High Street Henley-in-Arden Warwickshire B95 5AA

For the attention of: Peter Dickinson

Contract Title:	Chepstow
Date Received:	12/1/2021
Date Commenced:	12/1/2021
Date Completed:	28/1/2021

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

A Watkins (Director) R Berriman (Quality Manager) S Royle (Laboratory Manager)

L Knight (Senior Technician) S Eyre (Senior Technician)

H Daniels (Senior Technician)

Page 1 of

5 – 7 Hexthorpe Road, Hexthorpe, Doncaster DN4 0AR tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642 e-mail: rberriman@prosoils.co.uk awatkins@prosoils.co.uk

SUMMARY OF POINT LOAD TEST RESULTS

ISRM Suggested Methods : 2007

Borehole Number	Depth (m)	Sample Ref	Test Type	Orientation Par / Perp		nsions m) D	Area (mm2)	D _e ²	D _e (mm)	Failure I	Load (P) (kN)	I _s (MPa)	Corr Fac F	I _{s50} (MPa)	Failure Type	Remarks
BH101	4.15		Α	Par / Perp	90	47	(mm2) 4230	5385.80	73.39	(Mpa) -	(KN) 1.99	(MPa) 0.37	г 1.188	(NIPa) 0.44	Valid	
BH101 BH102	1.50		A	Perp	90	67	6030	7677.63	87.62		5.97	0.78	1.100	1.00	Valid	
BH102	2.66		A	Perp	90	55	4950	6302.54	79.39	-	4.13	0.66	1.231	0.81	Valid	
*Note	All testing c	arried out or	n samples a	at as received wa	ater conte	ent		Par = j	parallel, Perj	p = perpendio	cular, U = R	andom		A = Axial, D	= Diametral,	I = Irregular
(Å)															Contract No: PSL21/0345	
$(\downarrow \downarrow)$										C						
	Chepstow									С	lient Ref:					
4043	4043 Professional Soils Laboratory											799.02				

SUMMARY OF POINT LOAD TEST RESULTS

ISRM Suggested Methods : 2007

Borehole Number	Depth (m)	Sample Ref	Test Type	Orientation		m)	D _e ²	D _e	Failur		Is	Corr Fac	I _{s50}	Failure Type	Remarks
BH101	4.15		D	Par / Perp Par	L	D 90	8100	(mm) 90.00	(Mpa)	(kN) 1.26	(MPa) 0.156	F 1.303	(MPa) 0.20	Valid	
BH101 BH102	4.15		D	Par Par	-	90 90	8100	90.00	-	4.06	0.150	1.303	0.20	Valid Valid	
BH102 BH102	2.66		D	Par	_	90	8100	90.00	-	3.77	0.301	1.303	0.03	Valid	
<u>*Note</u>	All testing	carried out or	n samples a	at as received wa	ater conto	ent		Par =	parallel, Perj	o = perpendi	cular, $U = R$	andom			
										Contract No:					
														PSL21/0345	
								Chepstow							Client Ref:
4043	Professional Soils Laboratory										799.02				

LABORATORY REPORT

4043

Contract Number: PSL20/7003

Report Date: 18 December 2020

- Client's Reference: 799.02
- Client Name: Remada Ltd Forward House 17 High Street Henley-in-Arden Warwickshire B95 5AA

For the attention of: Peter Dickinson

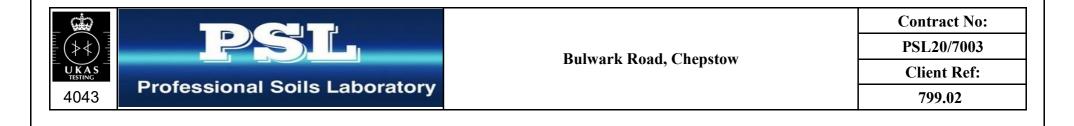
Contract Title:	Bulwark Road, Chepstow
Date Received:	3/12/2020
Date Commenced:	3/12/2020
Date Completed:	18/12/2020

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

H Daniels (Senior Technician)

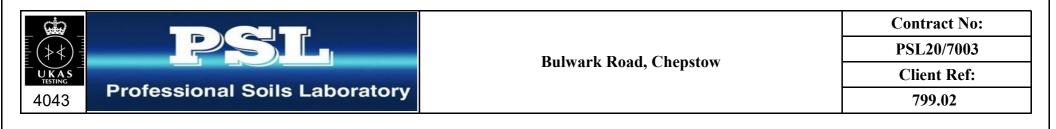

A Watkins (Director) R Berriman (Quality Manager)

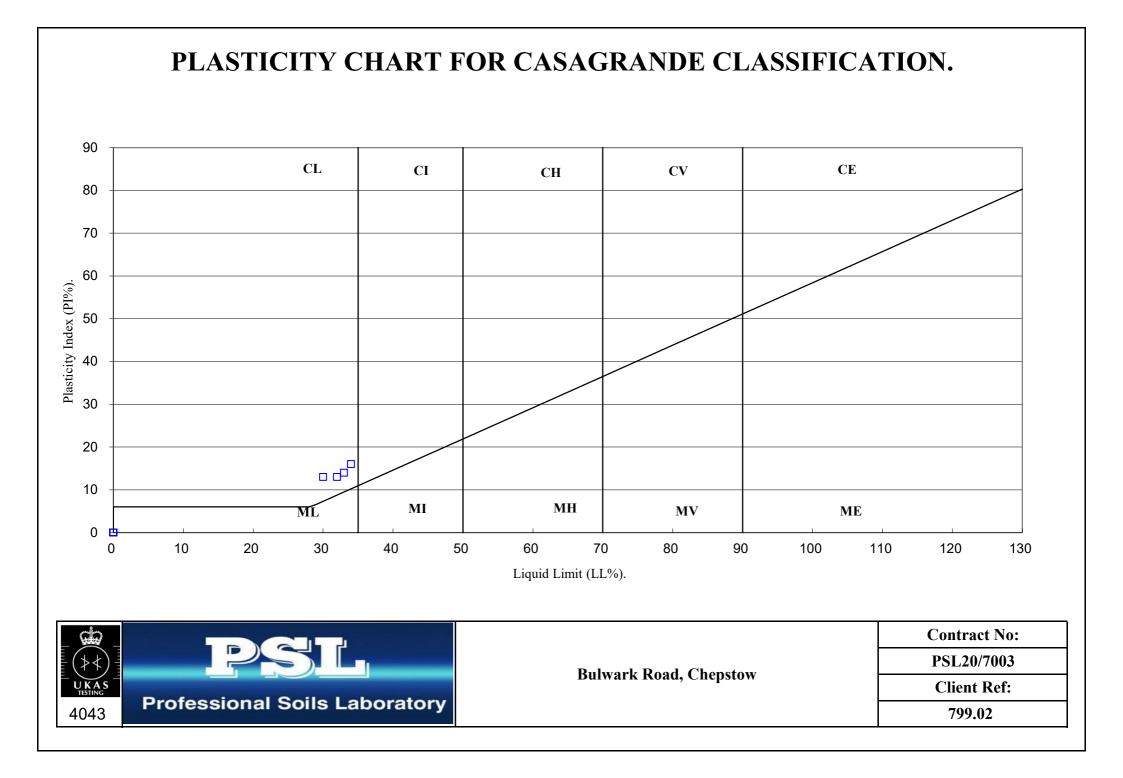
S Royle (Laboratory Manager) S Eyre (Senior Technician) L Knight (Senior Technician)

5 – 7 Hexthorpe Road, Hexthorpe, Doncaster DN4 0AR tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642 e-mail: rgunson@prosoils.co.uk awatkins@prosoils.co.uk Page 1 of

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

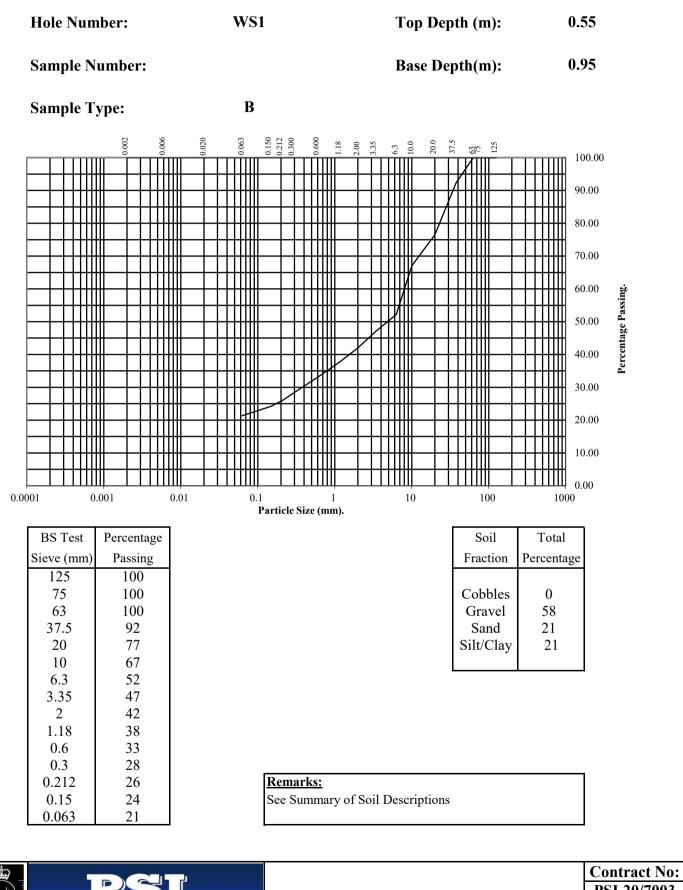
Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
WS1		В	0.55	0.95	Brown very sandy very clayey GRAVEL.
WS2		В	0.85	1.10	Brown very sandy very clayey GRAVEL.
WS3		В	0.60	1.20	Brown slightly gravelly very sandy CLAY.
WS4		В	1.10	1.40	Brown slightly gravelly very sandy very silty CLAY.
WS5		В	1.55	2.00	Brown very gravelly sandy CLAY.
WS6		В	0.20	0.60	Brown TOPSOIL.
WS7		В	0.50	1.20	Brown very sandy CLAY.
WS8		В	0.90	1.10	Brown very gravelly clayey SAND.


SUMMARY OF SOIL CLASSIFICATION TESTS


(BS1377 : PART 2 : 1990)

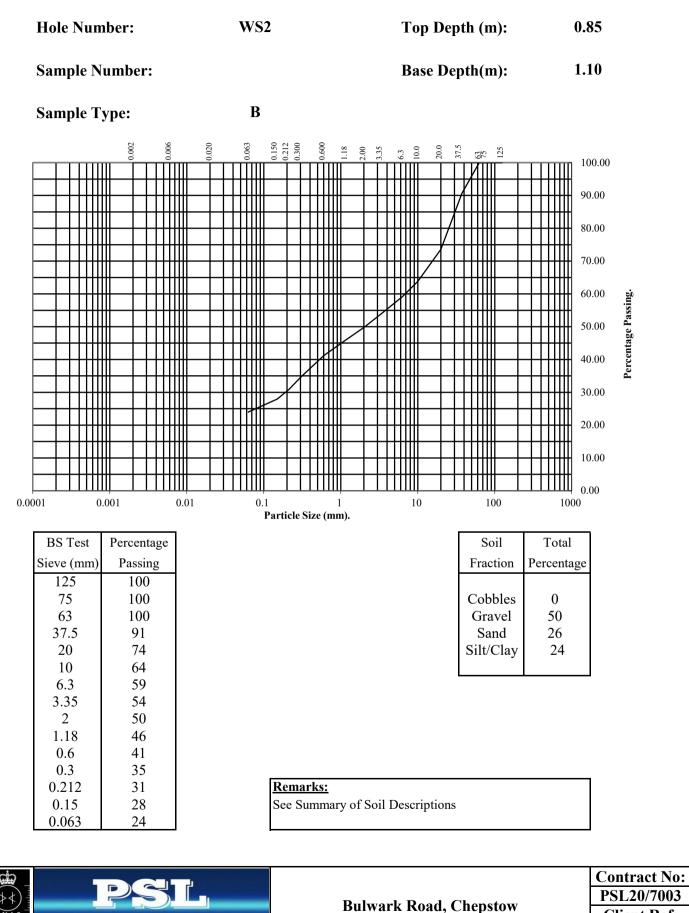
					Moisture	Linear	Particle	Liquid	Plastic	Plasticity	Passing	
Hole	Sample	Sample	Тор	Base	Content	Shrinkage	Density	Limit	Limit	Index	.425mm	Remarks
Number	Number	Туре	Depth	Depth	%	%	Mg/m ³	%	%	%	%	
			m	m	Clause 3.2	Clause 6.5	Clause 8.2	Clause 4.3/4	Clause 5.3	Clause 5.4		
WS1		В	0.55	0.95	15			34	18	16	30	Low Plasticity CL
WS3		В	0.60	1.20	25			32	19	13	91	Low Plasticity CL
WS4		В	1.10	1.40	18			33	19	14	84	Low Plasticity CL
WS7		В	0.50	1.20	21			30	17	13	100	Low Plasticity CL
WS8		В	0.90	1.10	13				NP			

SYMBOLS : NP : Non Plastic


* : Liquid Limit and Plastic Limit Wet Sieved.

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2



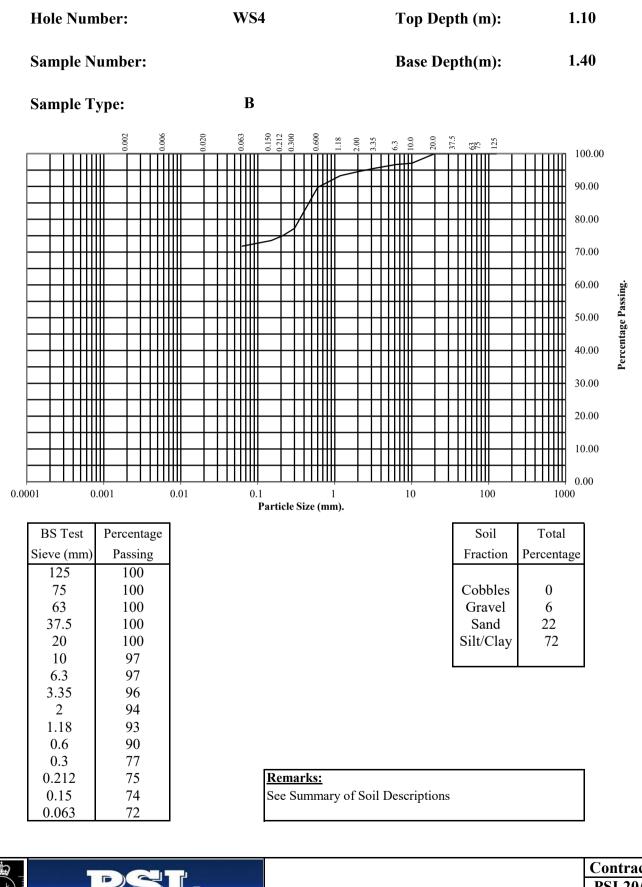
Bulwark Road, Chepstow

Professional Soils Laboratory

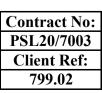
BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

Professional Soils Laboratory

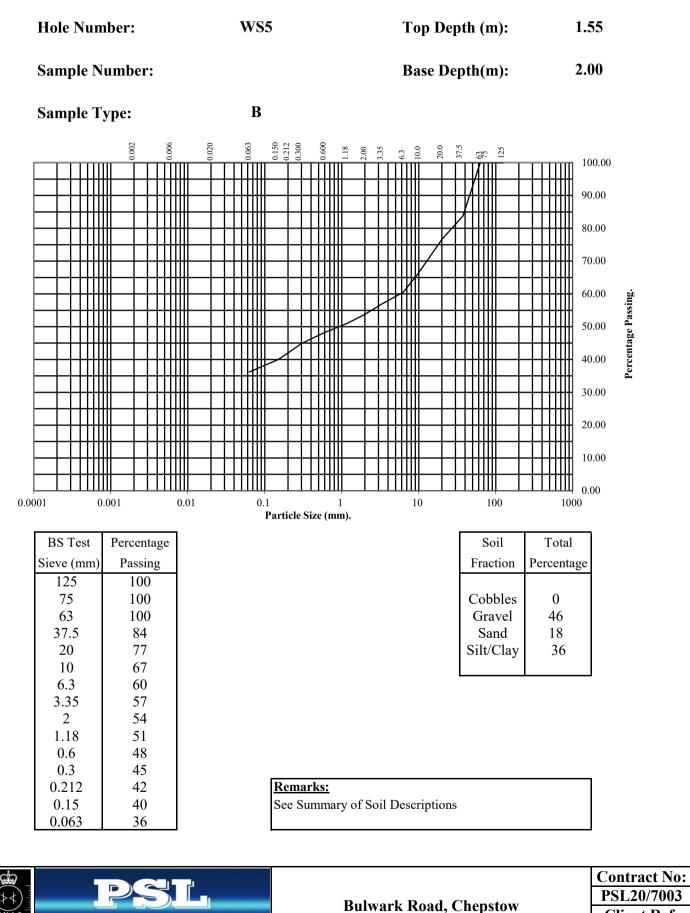

4043

Client Ref:


799.02

BS1377 : Part 2 : 1990

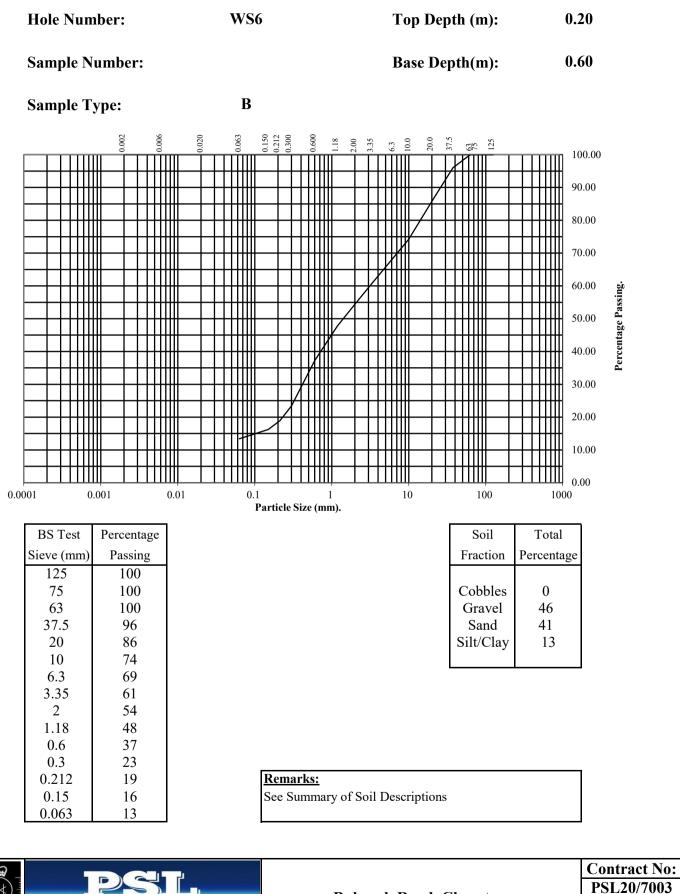
Wet Sieve, Clause 9.2



BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

Professional Soils Laboratory


4043

Client Ref:

799.02

BS1377 : Part 2 : 1990

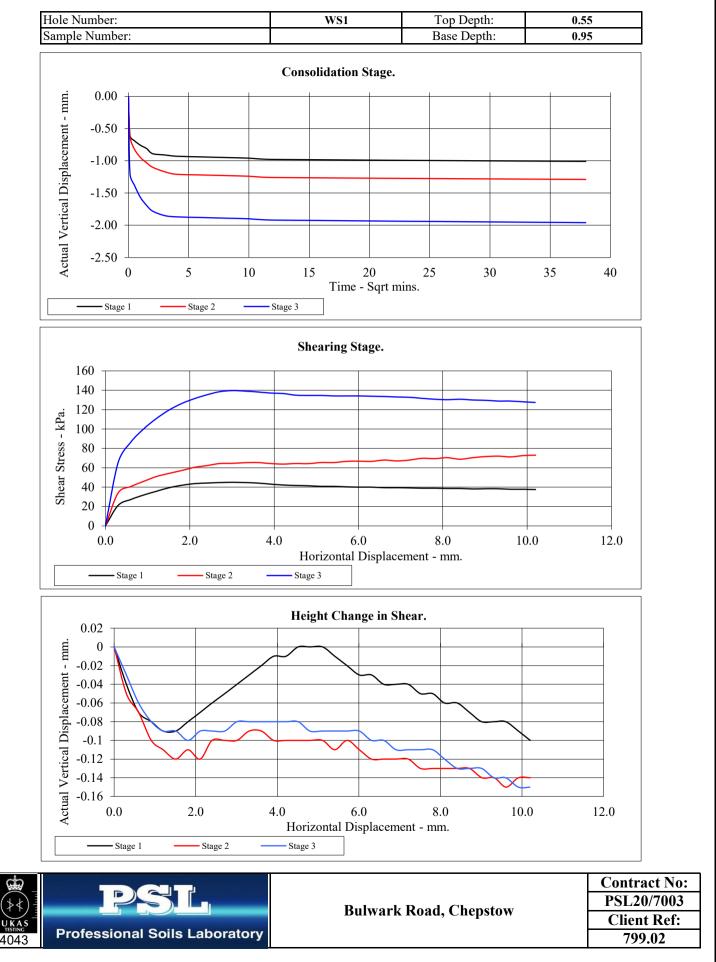
Wet Sieve, Clause 9.2

Bulwark Road, Chepstow

Client Ref:

799.02

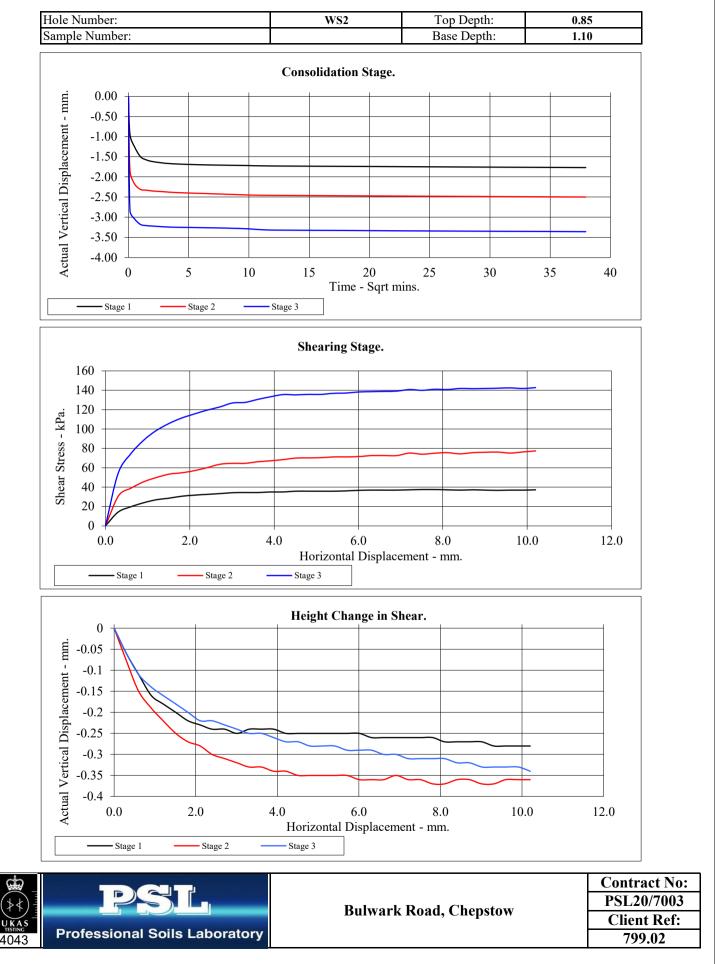
BS1377:Part 7:1990 Clause 4


Hole Number:		WS1	Top Depth	1:	0.5	55
Sample Number:			Base Dept		n: 0.95	
Sample Conditions:		Submerged	Sample Ty	/pe	I	3
Particle Density - Mg/m3:	2.65	Assumed	Remarks:			
· · · · ·	Material tested passing 2mm sieve					
Sample Preparation:		l using 2.5kg effort.				
Sample Description:		ary of soil descriptions.	•			
STAGE		· · ·		1	2	3
		Initial Conditions		•		
Height - mm:				20.05	20.05	20.05
Length - mm:				59.97	59.97	59.97
Moisture Content - %:				18	18	18
Bulk Density - Mg/m3:				2.13	2.13	2.13
Dry Density - Mg/m3:				1.79	1.79	1.79
Voids Ratio:				0.477	0.477	0.477
Normal Pressure- kPa				50	100	200
		Consolidation Stag	e	•		
Consolidated Height - mm:		~ ~ ~ ~		19.04	18.76	18.09
		Shearing Stage			•	•
Rate of Strain - mm/min				0.048	0.048	0.048
Displacement at peak shear st	tress - mm			3.01	10.20	3.01
Peak shear Stress - kPa:				45	73	140
	Ι	Final Consolidated Con	litions	•		
Moisture Content - %:				20	19	18
Bulk Density - Mg/m3:				2.24	2.27	2.36
Dry Density - Mg/m3:				1.87	1.91	2.00
		Peak		•		
Angle of Shearing Resistance	e:(0)				33	
Effective Cohesion - kPa:					10	
250 -						
250						
200						

Shear Stress - (kPa). 150 100 50 0 50 100 150 200 250 0 Normal Stress -(kPa). • Peak shear Stress - kPa: Best Fit Line **Contract No:** PSL20/7003 **Bulwark Road, Chepstow Client Ref:**

799.02

BS1377:Part 7:1990 Clause 4

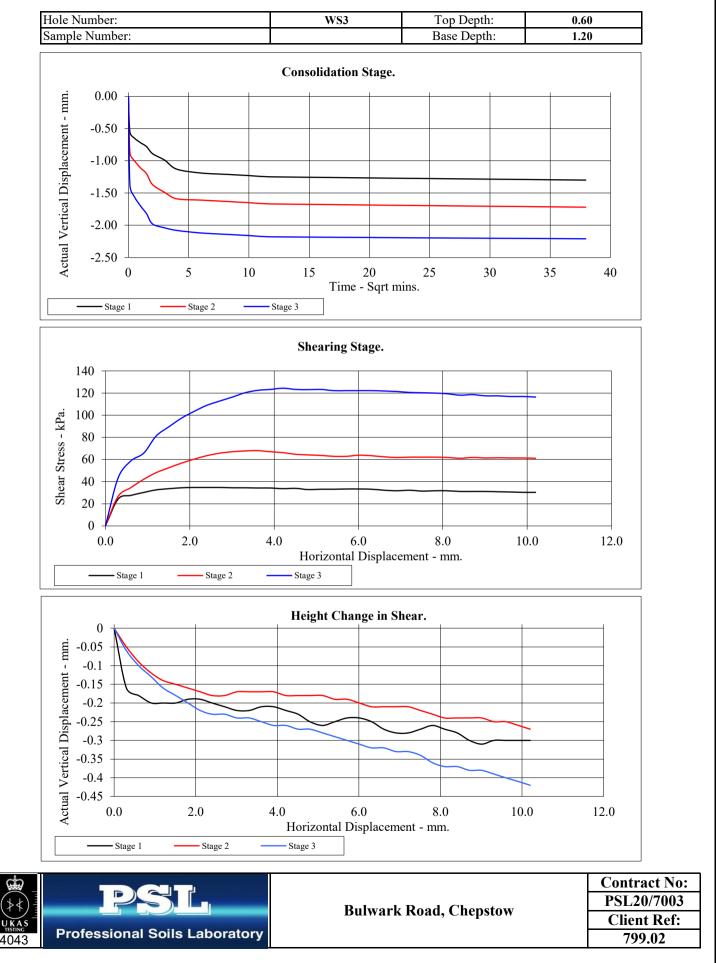


BS1377:Part 7:1990 Clause 4

Hole Number:		WS2	Top Depth:		0.8	85
Sample Number:			Base Depth:		10	
Sample Conditions:		Submerged	Sample Type B			
Particle Density - Mg/m3:	2.65	Assumed	Remarks:			
Sample Preparation:	Material tested passing 2mm sieve					
Sample Freparation.	Remoulded	using 2.5kg effort.				
Sample Description:	See summa	ry of soil descriptions.				
STAGE				1	2	3
		Initial Conditions				
Height - mm:				20.05	20.05	20.05
Length - mm:				59.97	59.97	59.97
Moisture Content - %:				18	18	18
Bulk Density - Mg/m3:				2.00	2.00	2.00
Dry Density - Mg/m3:				1.70	1.70	1.70
Voids Ratio:				0.561	0.561	0.561
Normal Pressure- kPa				50	100	200
		Consolidation Stag	je			
Consolidated Height - mm:				18.28	17.55	16.69
		Shearing Stage				
Rate of Strain - mm/min				0.054	0.054	0.054
Displacement at peak shear	stress - mm			7.51	10.20	10.20
Peak shear Stress - kPa:				38	77	143
	F	inal Consolidated Con	ditions			
Moisture Content - %:				21	21	21
Bulk Density - Mg/m3:				2.20	2.29	2.41
Dry Density - Mg/m3:				1.81	1.89	1.99
		Peak				
Angle of Shearing Resistant	$e:(\theta)$				34	
Effective Cohesion - kPa:					7	
250						
200						
200						
(a).				1		

Shear Stress - (kPa 150 100 50 0 50 100 150 200 250 0 Normal Stress -(kPa). • Peak shear Stress - kPa: Best Fit Line **Contract No:** PSL20/7003 **Bulwark Road, Chepstow Client Ref: Professional Soils Laboratory** 799.02

BS1377:Part 7:1990 Clause 4



BS1377:Part 7:1990 Clause 4

	<u> </u>	81377:Part 7:1990 0	<u>lause 4</u>			
Hole Number:		WS3	Top Depth:		0.6	50
Sample Number:		Base Depth:	Base Depth:		1.20	
Sample Conditions:		Submerged	Sample Type		I	3
Particle Density - Mg/m3:	2.65	Assumed	Remarks:			
Sample Preparation:	Material te	sted passing 2mm sieve				
Sample i reparation.		l using 2.5kg effort.				
Sample Description:	See summa	ary of soil descriptions.				
STAGE				1	2	3
		Initial Conditions				
Height - mm:				20.05	20.05	20.05
Length - mm:				59.97	59.97	59.97
Moisture Content - %:				24	24	24
Bulk Density - Mg/m3:				2.13	2.13	2.13
Dry Density - Mg/m3:				1.71	1.71	1.71
Voids Ratio:				0.547	0.547	0.546
Normal Pressure- kPa				50	100	200
		Consolidation Stag	ge			
Consolidated Height - mm:				18.75	18.33	17.84
		Shearing Stage				
Rate of Strain - mm/min				0.052	0.052	0.052
Displacement at peak shear	stress - mm			2.11	3.61	4.21
Peak shear Stress - kPa:				35	68	124
	I	Final Consolidated Con	ditions			
Moisture Content - %:				19	18	17
Bulk Density - Mg/m3:				2.28	2.33	2.40
Dry Density - Mg/m3:				1.92	1.98	2.04
		Peak			-	
Angle of Shearing Resistance	$e:(\theta)$				30	
Effective Cohesion - kPa:					8	
250 -						
230						
200						
a).						
A 150						
Shear Stress - (kPa)				/		
ess						
Str						
te 100						
Sh						

50 0 50 100 150 200 250 0 Normal Stress -(kPa). • Peak shear Stress - kPa: Best Fit Line **Contract No:** PSL20/7003 **Bulwark Road, Chepstow Client Ref: Professional Soils Laboratory** 799.02 4043

BS1377:Part 7:1990 Clause 4

APPENDIX D SPT Hammer Calibration

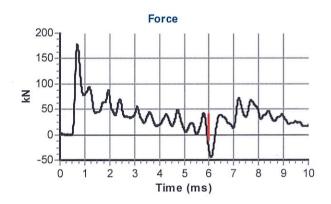
SPT Hammer Energy Test Report

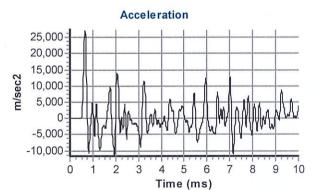
in accordance with BSEN ISO 22476-3:2005

Dando Drilling International Unit G Ford Airfield industrial estate Ford West Sussex BN18 OHY

SPT Hammer Ref: ADP 06 Test Date: 17/12/2020 Report Date: 17/12/2020 File Name: ADP 06.spt Test Operator: MS

Instrumented Rod Data

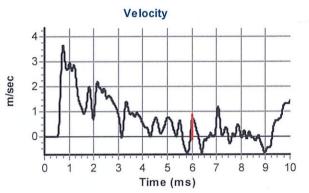

Diameter d _r (mm):	54
Wall Thickness t _r (mm):	6.5
Rod Length l _r (m):	1.0
Assumed Modulus E _a (GPa):	208
Accelerometer No.1:	11855
Accelerometer No.2:	11406


Hammer Mass	m (kg):	63.5
Falling Height	h (mm):	760
SPT String Len	gth L (m):	15.0

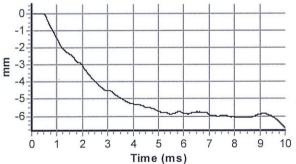
SPT Hammer Information

Comments / Location

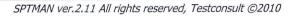
ADP


76

α.


Calc	ulations	5
A		1.

Area of Rod A (mm2):970Theoretical Energy E
theor(J):473Measured Energy E
meas(J):361


Energy Ratio E_r (%):

Signed: Matthew Simpson Title: Workshop Foreman

